Skip to main content
Log in

Error estimates for large-scale ill-posed problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmuty, G.: A posteriori error estimates for linear equations. Numer. Math. 61, 1–6 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakushinskii, A.B.: Remarks on choosing a regularization parameter using quasi-optimality and ratio criterion. USSR Comput. Math. Math. Phys. 24(4), 181–182 (1984)

    Article  MathSciNet  Google Scholar 

  4. Brezinski, C.: Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21, 764–781 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49 (2008). doi:10.1007/s11075-008-9163-1

  6. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 49 (2008). doi:10.1007/s11075-008-9243-2

  7. Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)

    Article  MATH  Google Scholar 

  10. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  11. Gautschi, W.: The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. 13, 119–147 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  13. Golub, G.H.: Bounds for matrix moments. Rocky Mount. J. Math. 4, 207–211 (1974)

    Article  MathSciNet  Google Scholar 

  14. Golub, G.H., Kautsky, J.: Calculation of Gauss quadratures with multiple free and fixed nodes. Numer. Math. 41, 147–163 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1993, pp. 105–156. Longman, Essex (1994)

  16. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007). Software is available in Netlib at http://www.netlib.org

    Article  MATH  MathSciNet  Google Scholar 

  17. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Google Scholar 

  18. López Lagomasino, G., Reichel, L., Wunderlich, L.: Matrices, moments, and rational quadrature. Linear Algebra Appl. 429, 2540–2554 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. van der Mee, C.V.M., Seatzu, S.: A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM J. Matrix Anal. Appl. 26, 1132–1149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Morigi, S., Reichel, L., Sgallari, F.: Orthogonal projection regularization operators. Numer. Algorithms 44, 99–114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)

    Article  MATH  Google Scholar 

  23. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. (in press)

  24. Rodriguez, G.: Fast solution of Toeplitz- and Cauchy-like least-squares problems. SIAM J. Matrix Anal. Appl. 28, 724–748 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seatzu, S.: A remark on the solution of linear inverse problems with discrete data. Inverse Probl. 2. L27–L30 (1986)

    Article  Google Scholar 

  26. Shaw, C.B., Jr.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reichel.

Additional information

In memory of Gene H. Golub.

This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, L., Rodriguez, G. & Seatzu, S. Error estimates for large-scale ill-posed problems. Numer Algor 51, 341–361 (2009). https://doi.org/10.1007/s11075-008-9244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9244-1

Keywords

Navigation