Skip to main content
Log in

Efficient MFS algorithms in regular polygonal domains

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we apply the Method of Fundamental Solutions (MFS) to harmonic and biharmonic problems in regular polygonal domains. The matrices resulting from the MFS discretization possess a block circulant structure. This structure is exploited to produce efficient Fast Fourier Transform–based Matrix Decomposition Algorithms for the solution of these problems. The proposed algorithms are tested numerically on several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialecki, B., Fairweather, G.: Matrix decomposition algorithms for separable elliptic boundary value problems in two space directions. J. Comput. Appl. Math. 46, 369–386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bialecki, B., Fairweather, G.: Matrix decomposition algorithms in orthogonal spline collocation for separable elliptic boundary value problems. SIAM J. Sci. Comput. 16, 330–347 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cho, H.A., Golberg, M.A., Muleshkov, S.A., Li, X.: Trefftz methods for time dependent partial differential equations. CMC Comput. Mater. Contin. 1, 1–37 (2004)

    Google Scholar 

  4. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  5. Fairweather, G., Johnston, R.L.: The method of fundamental solutions for problems in potential theory. In: Baker, C.T.H., Miller, G.F. (eds.) Treatment of Integral Equations by Numerical Methods, pp. 349–359. Academic, London (1982)

    Google Scholar 

  6. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fairweather, G., Karageorghis, A., Martin, P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)

    Article  MATH  Google Scholar 

  8. Fairweather, G., Karageorghis, A., Smyrlis, Y.-S.: A matrix decomposition MFS algorithm for axisymmetric biharmonic problems. Adv. Comput. Math. 23, 55–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics, Southampton (1997)

    Google Scholar 

  10. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Boundary Integral Methods: Numerical and Mathematical Aspects, Comput. Eng., vol. 1, pp. 103–176. WIT/Comput. Mech., Boston (1999)

    Google Scholar 

  11. Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32, 64–75 (2008)

    Article  Google Scholar 

  12. Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev. 21, 481–527 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Higham, D.J., Higham, N.J.: MATLAB Guide. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  14. Johnston, R.L., Fairweather, G.: The method of fundamental solutions for problems in potential flow. Appl. Math. Model. 8, 265–270 (1984)

    Article  MATH  Google Scholar 

  15. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the solution of nonlinear plane potential problems. IMA J. Numer. Anal. 9, 231–242 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: A matrix decomposition RBF algorithm: approximation of functions and their derivatives. Appl. Numer. Math. 57, 304–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 35, 507–518 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31, 123–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)

    Article  MATH  Google Scholar 

  20. Kołodziej, J.A.: Review of applications of the boundary collocation methods in mechanics of continuous media. Solid Mech. Arch. 12, 187–231 (1987)

    MATH  Google Scholar 

  21. Kołodziej, J.A.: Applications of the Boundary Collocation Method in Applied Mechanics (in Polish). Wydawnictwo Politechniki Poznańskiej, Poznań (2001)

    Google Scholar 

  22. Kołodziej, J.A., Fraska, A.: Elastic torsion of bars possessing regular polygon in cross-section using BCM. Comput. Struct. 84, 78–91 (2005)

    Article  Google Scholar 

  23. Lamp, U., Schleicher, K.-T., Wendland, W.L.: The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations. Numer. Math. 47, 15–38 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meyer, C.D.: Analysis and Applied Linear Algebra. SIAM, Philadelhia (2000)

    MATH  Google Scholar 

  26. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16, 341–371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain biharmonic problems. CMES Comput. Model. Eng. Sci. 4, 535–550 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Smyrlis, Y.-S., Karageorghis, A.: A matrix decomposition MFS algorithm for axisymmetric potential problems. Eng. Anal. Bound. Elem. 28, 463–474 (2004)

    Article  MATH  Google Scholar 

  29. Smyrlis, Y.-S., Karageorghis, A.: Numerical analysis of the MFS for certain harmonic problems. M2AN Math. Model. Numer. Anal. 38, 495–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Karageorghis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karageorghis, A. Efficient MFS algorithms in regular polygonal domains. Numer Algor 50, 215–240 (2009). https://doi.org/10.1007/s11075-008-9224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9224-5

Keywords

Mathematics Subject Classifications (2000)

Navigation