Skip to main content

Advertisement

Log in

Maximum recoverable work and pseudofree energies for a rigid heat conductor

  • Published:
Nonlinear Oscillations

Abstract

In this paper, we consider a linear theory for a rigid heat conductor with memory effects for a heat flux in order to deduce explicit formulas for the minimum free energy, which is related to the maximum recoverable work that can be obtained from a given state of a body. Two equivalent forms of this work are given in the frequency domain. Finally, two different expressions for a thermodynamic potential, called pseudofree energy, are introduced for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal., 31, 113–126 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  2. B. D. Coleman, “Thermodynamics of materials with memory,” Arch. Ration. Mech. Anal., 17, 1–46 (1964).

    Google Scholar 

  3. C. Cattaneo, “Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena, 3, 83–101 (1948).

    MathSciNet  Google Scholar 

  4. M. Fabrizio, G. Gentili, and D. W. Reynolds, “On rigid heat conductors with memory,” Int. J. Eng. Sci., 36, 765–782 (1998).

    Article  MathSciNet  Google Scholar 

  5. S. Breuer and E. T. Onat, “On the determination of free energy in viscoelastic solids,” Z. Angew. Math. Phys., 15, 185–191 (1964).

    Google Scholar 

  6. S. Breuer and E. T. Onat, “On recoverable work in viscoelasticity,” Z. Angew. Math. Phys., 32, 13–21 (1981).

    Google Scholar 

  7. W. A. Day, “Reversibility, recoverable work and free energy in linear viscoelasticity,” Quart. J. Mech. Appl. Math., 23, 1–15 (1970).

    Article  MATH  Google Scholar 

  8. G. Del Piero and L. Deseri, “On the analytic expression of the free energy in linear viscoelasticity,” J. Elasticity, 43, 147–278 (1996).

    Article  MathSciNet  Google Scholar 

  9. G. Del Piero and L. Deseri, “On the concept of the state and free energy in linear viscoelasticity,” Arch. Ration. Mech. Anal., 138, 1–35 (1997).

    Article  MATH  Google Scholar 

  10. L. Deseri, M. Fabrizio, and J. M. Golden, “On the concept of a minimal state in viscoelasticity: new free energies and applications to PDEs,” Arch. Ration. Mech. Anal. (2006).

  11. M. Fabrizio, C. Giorgi, and A. Morro, “Free energies and dissipation properties for systems with memory,” Arch. Ration. Mech. Anal., 125, 341–373 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Fabrizio and J. M. Golden, “Maximum and minimum free energies for a linear viscoelastic material, ” Quart. Appl. Math., 60, No. 2, 341–381 (2002).

    MATH  MathSciNet  Google Scholar 

  13. M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia (1992).

    MATH  Google Scholar 

  14. G. Gentili, “Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, ” Quart. Appl. Math., 60, No. 1, 153–182 (2002).

    MATH  MathSciNet  Google Scholar 

  15. J. M. Golden, “Free energy in the frequency domain: the scalar case,” Quart. Appl. Math., 58, No. 1, 127–150 (2000).

    MATH  MathSciNet  Google Scholar 

  16. N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen (1953).

    MATH  Google Scholar 

  17. G. Amendola and S. Carillo, “Thermal work and minimum free energy in a heat conductor with memory, ” Quart. J. Mech. Appl. Math., 57, No. 3, 429–446 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Giorgi and G. Gentili, “Thermodynamic properties and stability for the heat flux equation with linear memory,” Quart. Appl. Math., 58, No. 2, 343–362 (1993).

    MathSciNet  Google Scholar 

  19. B. D. Coleman and D. R. Owen, “A mathematical foundation of thermodynamics,” Arch. Ration. Mech. Anal., 54, 1–104 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. McCarty, “Constitutive equations for thermomechanical materials with memory,” Int. J. Engn. Sci., 8, 467–486 (1970).

    Article  Google Scholar 

  21. W. Noll, “A new mathematical theory of simple materials,” Arch. Ration. Mech. Anal., 48, 1–50 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Graffi, “Sull’espressione analitica di alcune grandezze termodinamiche nei materiali con memoria,” Rend. Semin. Mat. Univ. Padova, 68, 17–29 (1982).

    MATH  MathSciNet  Google Scholar 

  23. D. Graffi, “Ancora sull’espressione dell’energia libera nei materiali con memoria, ” Atti Accad. Sci. Torino, 120, 111–124 (1986).

    MathSciNet  Google Scholar 

  24. D. Graffi and M. Fabrizio, “Sulla nozione di stato per materiali viscoelastici di tipo ‘rate,’ ” Atti Accad. Naz. Lincei, 83, 201–208 (1990).

    MathSciNet  Google Scholar 

  25. D. Graffi and M. Fabrizio, “Non unicità dell’energia libera per materiali viscoelastici,” Atti Accad. Naz. Lincei, 83, 209–214 (1990).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Neliniini Kolyvannya, Vol. 10, No. 1, pp. 7–25, January–March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amendola, G., Bosello, C.A. & Fabrizio, M. Maximum recoverable work and pseudofree energies for a rigid heat conductor. Nonlinear Oscill 10, 4–21 (2007). https://doi.org/10.1007/s11072-007-0002-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11072-007-0002-4

Keywords

Navigation