Skip to main content
Log in

The dynamic instability analysis of electrodynamic tether system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The libration motion of conductive tether in the electrodynamic tether system has been demonstrated to be inherently unstable. However, the relationship between the instability of libration motion and the tether current, orbital inclination and attitude of libration motion has not been thoroughly investigated. The novelty of this paper lies in the determination of the critical ranges of attitude and \(\varepsilon\) that lead to rapid tumbling of libration motion, and the study of how the instability of libration motion varies with attitude and \(\varepsilon\), where \(\varepsilon\) accounts for the effects of tether current and orbital inclination. Some numerical simulations were conducted to demonstrate that, as attitude and \(\varepsilon\) increase, the instability of libration motion gradually becomes more pronounced, especially when the attitude angle or \(\varepsilon\) exceeds the respective critical range, in which case the libration will become unstable even with implementation of control strategy. The critical range of tether current, which leads to rapid tumbling of the libration motion, can be determined based on the range of \(\varepsilon\), and this range of current can serve as a basis for designing the current regulation range, thereby preventing rapid tumbling that may result from improperly designed or regulated current values. The critical range of attitude angle can be utilized to monitor attitude motion and to avoid quick tumbling caused by excessive attitude angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article. The datasets are available from the corresponding author on reasonable request.

Abbreviations

EDT:

Electrodynamic tether

TDAS:

Time-delayed autosynchronization

ETDA:

Extended time-delayed autosynchronization

m m :

Mass of main satellite

m s :

Mass of sub-satellite

m t :

Mass of tether

L :

Length of tether

\(F_{I} \left( {OXYZ} \right)\) :

Global inertial frame

\(F_{o} \left( {o_{m} x_{o} y_{o} z_{o} } \right)\) :

Orbital frame of main satellite

\(\theta\) :

In-plane angle of tether

\(\phi\) :

Out-of-plane angle of tether

\(I_{m}\) :

Tether current

\(\mu_{m}\) :

Geomagnetic dipole moment

\(i_{o}\) :

Orbital inclination

\(\mu_{g}\) :

Gravitational constant

\(Q_{\theta } ,\;Q_{\phi }\) :

Control input with respect to in-plane and out-of-plane angles

\(\Omega\) :

Orbital angular velocity

v :

Argument of latitude

t :

Time

\(I_{c}\) :

Control current

\(k_{\theta } ,\;k_{\phi }\) :

Feedback gains

\(R_{\theta } ,\;R_{\phi }\) :

Memory parameters

References

  1. Mróz, P., Otarola, A., Prince, T.A., et al.: Impact of the SpaceX starlink satellites on the Zwicky transient facility survey observations. Astrophys. J. Lett. 924(2), L30 (2022). https://doi.org/10.3847/2041-8213/ac470a

    Article  Google Scholar 

  2. Tao, H.C., Che, X.K., Zhu, Q.Y., et al.: Satellite In-orbit secondary collision risk assessment. Int. J. Aerosp. Eng. 2022, 6358188 (2022). https://doi.org/10.1155/2022/6358188

    Article  Google Scholar 

  3. Ledkov, A., Aslanov, V.: Review of contact and contactless active space debris removal approaches. Prog. Aerosp. Sci. 134, 100858 (2022). https://doi.org/10.1016/j.paerosci.2022.100858

    Article  Google Scholar 

  4. Svotina, W., Cherkasova, V.: Space debris removal-review of technologies and techniques. Flexible or virtual connection between space debris and service spacecraft. Acta Astronaut. 204, 840–853 (2023). https://doi.org/10.1016/j.actaastro.2022.09.027

    Article  Google Scholar 

  5. Ledkov, A., Aslanov, V.: Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence. Nonlinear Dyn. 96, 211–2223 (2019). https://doi.org/10.1007/s11071-019-04918-6

    Article  Google Scholar 

  6. Lim, J., Chung, J.: Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn. 94(4), 2391–2408 (2018). https://doi.org/10.1007/s11071-018-4498-1

    Article  Google Scholar 

  7. Huang, W., He, D., Li, Y., et al.: Nonlinear dynamic modeling of a tether-net system for space debris capture. Nonlinear Dyn. 110(3), 2297–2315 (2022). https://doi.org/10.1007/s11071-022-07718-7

    Article  Google Scholar 

  8. Sato, T., Kawamoto, S., Ohkawa, Y., et al.: Performance of EDT system for deorbit devices using new materials. Acta Astronaut. 177, 813–820 (2020). https://doi.org/10.1016/j.automatica.2022.110798

    Article  Google Scholar 

  9. Wen, H., Jin, D.P., Hu, H.Y.: Removing singularity of orientation description for modeling and controlling an electrodynamic tether. J. Guid. Control. Dyn. 41(3), 761–766 (2018). https://doi.org/10.2514/1.G003009

    Article  Google Scholar 

  10. Galal, A.A., Amer, T.S., El-Kafly, H., et al.: The asymptotic solutions of the governing system of a charged symmetric body under the influence of external torques. Results Phys. 18, 103160 (2020). https://doi.org/10.1016/j.rinp.2020.103160

    Article  Google Scholar 

  11. Amer, T.S., El-Kafly, H., Galal, A.A.: The 3D motion of a charged solid body using the asymptotic technique of KBM. Alex. Eng. J. 60(6), 5655–5673 (2021). https://doi.org/10.1016/j.aej.2021.03.063

    Article  Google Scholar 

  12. Amer, T.S., El-Sabaa, F.M., Sallam, A.A., et al.: Studying the vibrational motion of a rotating symmetrically charged solid body subjected to external forces and moments. Math. Comput. Simul 210, 120–146 (2023). https://doi.org/10.1016/j.matcom.2023.03.003

    Article  MathSciNet  Google Scholar 

  13. Peláez, J., Lorenzini, E.C., López-Rebollal, O., et al.: A new kind of dynamic instability in electrodynamic tethers. J. Astronaut. Sci. 48(4), 449–476 (2000). https://doi.org/10.1007/BF03546266

    Article  Google Scholar 

  14. Peláez, J., Andres, Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J. Guid. Control. Dyn. 28(4), 611–622 (2005). https://doi.org/10.2514/1.6685

    Article  Google Scholar 

  15. Yang, Y.W., Cai, H.: Libration dynamics of electrodynamic tether system for 13 degrees international geomagnetic reference field. Acta Astronaut. 151, 182–205 (2018). https://doi.org/10.1016/j.actaastro.2018.06.009

    Article  Google Scholar 

  16. Iñarrea, M., Lanchares, V., Pascual, A.I., et al.: Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control. Acta Astronaut. 96, 280–295 (2014). https://doi.org/10.1016/j.actaastro.2013.12.011

    Article  Google Scholar 

  17. Yang, Y.W., Cai, H.: Extended time-delay autosynchronization method for libration control of electrodynamic tether using lorentz force. Acta Astronaut. 159, 179–188 (2019). https://doi.org/10.1016/j.actaastro.2019.03.038

    Article  Google Scholar 

  18. Zhong, R., Zhu, Z.H.: Optimal current switching control of electrodynamic tethers for fast deorbit. J. Guid. Control. Dyn. 37(5), 1501–1511 (2014). https://doi.org/10.2514/1.G000385

    Article  Google Scholar 

  19. Li, G.Q., Zhu, Z.H.: Model predictive control for electrodynamic tether geometric profile in orbital maneuvering with finite element state estimator. Nonlinear Dyn. 106, 473–489 (2021). https://doi.org/10.1007/s11071-021-06869-3

    Article  Google Scholar 

  20. Li, Y.F., Li, A.J., Wang, C.Q.: Back-stepping sliding mode control for libration control of large swing angles of electrodynamic tether system. Adv. Space Res. 72(2), 231–242 (2023). https://doi.org/10.1016/j.asr.2023.03.021

    Article  Google Scholar 

  21. Ma, X.L., Wen, H.: Deep learning for deorbiting control of an electrodynamic tether system. Acta Astronaut. 202, 26–33 (2023). https://doi.org/10.1016/j.actaastro.2022.10.019

    Article  Google Scholar 

  22. Li, X.L., Yang, K.Y., Li, L.C., et al.: Dynamic modeling and analysis of electrodynamic multi-tether system. Space Sci. Technol. 3, 0057 (2023). https://doi.org/10.34133/space.0057

    Article  Google Scholar 

Download references

Funding

This work was supported by the National level project (Grant No. KISP2020010301), National Natural Science Foundation of China (Grant No. 12102038) and National level project (Grant No. 2022YFB3902702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keying Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, K. & Zhang, J. The dynamic instability analysis of electrodynamic tether system. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09771-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09771-w

Keywords

Navigation