Skip to main content
Log in

Response of hydraulic pipes to combined excitation in thermal environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Generally, the hydraulic pipe of a warplane experiences the pulsating flow generated by the plunger pump and the strong excitation generated by the jet engine. Furthermore, the pipe is situated in a high-temperature environment due to its proximity to the jet engine. Considering the combined influence of the thermal environment and excitation, this study presents a unique nonlinear resonance phenomenon in the hydraulic pipe for the first time. The governing equation is derived based on the Euler–Bernoulli beam theory and the generalized Hamilton’s principle. The steady-state response is analyzed using the direct multi-scale method, and the stability of the response curve is examined using the Routh–Hurwitz criterion. Runge–Kutta method verifies the approximate analytical results. Using the direct multi-scale method, the effects of temperature, pulsating velocity and external excitation amplitude on the pipe’s dynamics are investigated in detail. By comparing the stable boundary of the hydraulic pipe before and after buckling under the combined excitation, it is observed that the stability of the combined excitation is unaffected by the external excitation amplitude. The study also reveals that pulsating velocity and external excitation amplitude enhance the response, while an increase in temperature reduces the subcritical response and enhances the supercritical response. Additionally, temperature increments alter the range of excitation where the jumping phenomenon occurs. This research provides valuable theoretical guidance for the design of warplane jet engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to the authors have no repository but are available from the corresponding author on reasonable request.

References

  1. Païdoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  2. Semler, C., Li, G.X., Paıdoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577–599 (1994)

    Article  Google Scholar 

  3. Chen, B.-Q., Zhang, X., Guedes Soares, C.: The effect of general and localized corrosions on the collapse pressure of subsea pipelines. Ocean Eng. 247, 110719 (2022)

    Article  Google Scholar 

  4. Zhang, X., Duan, M., Guedes Soares, C.: Lateral buckling critical force for submarine pipe-in-pipe pipelines. Appl. Ocean Res. 78, 99–109 (2018)

    Article  Google Scholar 

  5. Gao, P.X., Zhai, J.Y., Qu, F.Z., Han, Q.K.: Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 232(8), 1529–1541 (2017)

    Article  Google Scholar 

  6. Guo, X.M., Cao, Y.M., Ma, H., Li, H., Wang, B., Han, Q.K., Wen, B.C.: Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility. Int. J. Mech. Sci. 231, 107606 (2022)

    Article  Google Scholar 

  7. Li, P., Liu, L., Dong, Z., Wang, F., Guo, H.: Investigation on the spoiler vibration suppression mechanism of discrete helical strakes of deep-sea riser undergoing vortex-induced vibration. Int. J. Mech. Sci. 172, 105410 (2020)

    Article  Google Scholar 

  8. Ensen, J.S.J.: Fluid transport due to nonlinear fluid-structure interaction. J. Fluids Struct. 11, 327–344 (1997)

    Article  Google Scholar 

  9. Lu, H., Iseley, T., Behbahani, S., Fu, L.: Leakage detection techniques for oil and gas pipelines: state-of-the-art. Tunn. Undergr. Space Technol. 98, 103249 (2020)

    Article  Google Scholar 

  10. Gao, P.X., Yu, T., Zhang, Y.L., Wang, J., Zhai, J.Y.: Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chin. J. Aeronaut. 34(4), 83–114 (2021)

    Article  Google Scholar 

  11. Maxit, L., Karimi, M., Guasch, O., Michel, F.: Numerical analysis of vibroacoustic beamforming gains for acoustic source detection inside a pipe conveying turbulent flow. Mech. Syst. Signal Process. 171, 108888 (2022)

    Article  Google Scholar 

  12. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mech. Syst. Signal Process. 141, 106442 (2020)

    Article  Google Scholar 

  13. Aliabadi, H.K., Ahmadi, A., Keramat, A.: Frequency response of water hammer with fluid-structure interaction in a viscoelastic pipe. Mech. Syst. Signal Process. 144, 106848 (2020)

    Article  Google Scholar 

  14. Heshmati, M., Amini, Y., Daneshmand, F.: Vibration and instability analysis of closed-cell poroelastic pipes conveying fluid. Eur. J. Mech. A. Solids 73, 356–365 (2019)

    Article  MathSciNet  Google Scholar 

  15. Guo, X.M., Cao, Y.M., Ma, H., Xiao, C.L., Wen, B.C.: Dynamic analysis of an L-shaped liquid-filled pipe with interval uncertainty. Int. J. Mech. Sci. 217, 107040 (2022)

    Article  Google Scholar 

  16. Fan, X., Zhu, C.A., Mao, X.Y., Ding, H.: Resonance regulation on a hydraulic pipe via boundary excitations. Int. J. Mech. Sci. 252, 108375 (2023)

    Article  Google Scholar 

  17. Shao, Y.F., Ding, H.: Evaluation of gravity effects on the vibration of fluid-conveying pipes. Int. J. Mech. Sci. 248, 108230 (2023)

    Article  Google Scholar 

  18. Semnani, D., Mehdi, A.: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations. Mech. Syst. Signal Process. 188, 110016 (2023)

    Article  Google Scholar 

  19. Liang, F., Chen, Y., Gong, J.J., Qian, Y.: Vibration self-suppression of spinning fluid-conveying pipes composed of periodic composites. Int. J. Mech. Sci. 220, 107150 (2022)

    Article  Google Scholar 

  20. Mironov, M.A., Pyatakov, P.A., Andreev, A.A.: Forced flexural vibrations of a pipe with a liquid flow. Acoust. Phys. 56(5), 739–747 (2010)

    Article  Google Scholar 

  21. Li, Y.D., Yang, Y.R.: Forced vibration of pipe conveying fluid by the Green function method. Arch. Appl. Mech. 84(12), 1811–1823 (2014)

    Article  Google Scholar 

  22. Zhao, Q., Sun, Z.: In-plane forced vibration of curved pipe conveying fluid by Green function method. Appl. Math. Mech. 38(10), 1397–1414 (2017)

    Article  MathSciNet  Google Scholar 

  23. Li, M., Zhao, X., Li, X., Chang, X.P., Li, Y.H.: Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green’s functions. Eng. Struct. 173, 300–312 (2018)

    Article  Google Scholar 

  24. Ding, H., Ji, J.C., Chen, L.Q.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019)

    Article  Google Scholar 

  25. Zhu, B., Xu, Q., Li, M., Li, Y.: Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation. Compos. Struct. 252, 112672 (2020)

    Article  Google Scholar 

  26. Askarian, A.R., Permoon, M.R., Shakouri, M.: Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions. Int. J. Mech. Sci. 179, 105702 (2020)

    Article  Google Scholar 

  27. Tan, X., Ding, H., Chen, L.Q.: Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. J. Sound Vib. 455, 241–255 (2019)

    Article  Google Scholar 

  28. Tan, X., Ding, H., Sun, J.Q., Chen, L.Q.: Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid. Ocean Eng. 203, 107258 (2020)

    Article  Google Scholar 

  29. Zhou, K., Ni, Q., Dai, H.L., Wang, L.: Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. J. Sound Vib. 471, 115189 (2020)

    Article  Google Scholar 

  30. Łuczko, J., Czerwiński, A.: Experimental and numerical investigation of parametric resonance of flexible hose conveying non-harmonic fluid flow. J. Sound Vib. 373, 236–250 (2016)

    Article  Google Scholar 

  31. Xie, W.D., Gao, X.F., Xu, W.H.: Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density. Acta Mech. Sin. 36(1), 206–219 (2019)

    Article  MathSciNet  Google Scholar 

  32. Li, Y.D., Yang, Y.-R.: Nonlinear vibration of slightly curved pipe with conveying pulsating fluid. Nonlinear Dyn. 88(4), 2513–2529 (2017)

    Article  MathSciNet  Google Scholar 

  33. Huang, B.W., Chen, G.S., Yu, C.-T.: Parametric resonance of a fluctuation fluid flow heat exchanger system. Int. J. Mech. Sci. 146–147, 386–395 (2018)

    Article  Google Scholar 

  34. Reddy, R.S., Panda, S., Natarajan, G.: Nonlinear dynamics of functionally graded pipes conveying hot fluid. Nonlinear Dyn. 99(3), 1989–2010 (2019)

    Article  Google Scholar 

  35. Tan, X., Ding, H.: Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids. J. Sound Vib. 485, 115594 (2020)

    Article  Google Scholar 

  36. Czerwiński, A., Łuczko, J.: Nonlinear vibrations of planar curved pipes conveying fluid. J. Sound Vib. 501, 116054 (2021)

    Article  Google Scholar 

  37. Liang, F., Gao, A., Li, X.-F., Zhu, W.-D.: Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity. Appl. Math. Model. 95, 320–338 (2021)

    Article  MathSciNet  Google Scholar 

  38. Khudayarov, B., Turaev, F.: Numerical simulation of a viscoelastic pipeline vibration under pulsating fluid flow. Multidiscip. Model. Mater. Struct. 18(2), 219–237 (2022)

    Article  Google Scholar 

  39. Wang, Y., Tang, M., Yang, M., Qin, T.: Three-dimensional dynamics of a cantilevered pipe conveying pulsating fluid. Appl. Math. Model. 114, 502–524 (2023)

    Article  MathSciNet  Google Scholar 

  40. Xiang, C., Yang, B., Wang, M., Wang, J.: Dynamic response of fully clamped sandwich pipes under transverse localized impulse. Int. J. Mech. Sci. 256, 108527 (2023)

    Article  Google Scholar 

  41. Dai, H.L., Abdelkefi, A., Wang, L.: Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. Int. J. Eng. Sci. 81, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  42. Rafiee, M., He, X.Q., Liew, K.-M.: Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int. J. Non-Linear Mech. 59, 37–51 (2014)

    Article  Google Scholar 

  43. Lei, S., Zheng, X.Y., Kennedy, D.: Dynamic response of a deepwater riser subjected to combined axial and transverse excitation by the nonlinear coupled model. Int. J. Non-Linear Mech. 97, 68–77 (2017)

    Article  Google Scholar 

  44. He, F., Dai, H., Huang, Z., Wang, L.: Nonlinear dynamics of a fluid-conveying pipe under the combined action of cross-flow and top-end excitations. Appl. Ocean Res. 62, 199–209 (2017)

    Article  Google Scholar 

  45. Saadatnia, Z., Esmailzadeh, E.: Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes. Compos. B Eng. 123, 193–209 (2017)

    Article  Google Scholar 

  46. Yang, T., Cao, Q.: Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. J. Stat. Mech: Theory Exp. 2017(4), 043202 (2017)

    Article  MathSciNet  Google Scholar 

  47. Zhang, L., Chen, F.: Multi-pulse jumping orbits and chaotic dynamics of cantilevered pipes conveying time-varying fluid. Nonlinear Dyn. 97(2), 991–1009 (2019)

    Article  Google Scholar 

  48. Wang, D., Bai, C., Zhang, H.: Nonlinear vibrations of fluid-conveying FG cylindrical shells with piezoelectric actuator layer and subjected to external and piezoelectric parametric excitations. Compos. Struct. 248, 112437 (2020)

    Article  Google Scholar 

  49. Guo, X.M., Gao, P.X., Ma, H., Li, H., Wang, B., Han, Q.K., Wen, B.C.: Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation. Mech. Syst. Signal Process. 189, 110086 (2023)

    Article  Google Scholar 

  50. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27(3), 503–517 (1992)

    Article  Google Scholar 

  51. Mao, X.Y., Gao, S.Y., Ding, H., Chen, L.Q.: Static bifurcation and nonlinear vibration of pipes conveying fluid in thermal environment. Ocean Eng. 278, 114418 (2023)

    Article  Google Scholar 

  52. Tan, X., Mao, X.Y., Ding, H., Chen, L.Q.: Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. J. Sound Vib. 428, 104–118 (2018)

    Article  Google Scholar 

  53. Hao, M.Y., Ding, H., Mao, X.Y., Chen, L.Q.: Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mech. Solida Sin. 36(2), 230–240 (2022)

    Article  Google Scholar 

  54. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dyn. 86(2), 795–809 (2016)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 12002195, 12372015), the National Science Fund for Distinguished Young Scholars (No. 12025204), the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Si-Yu Gao and Xiao-Ye Mao. The first draft of the manuscript was written by Xiao-Ye Mao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Ye Mao.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Sect. 3.1, the variable of Eq. (23) is represented as:

$$ \begin{gathered} \varsigma_{0} = - 2\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right){\text{i}}\omega_{{1}} \int_{0}^{L} {\Theta_{1} \overline{\Theta }_{1} {\text{d}}x} , \hfill \\ \varsigma_{1} = - \alpha I_{{\text{p}}} \omega_{{1}} {\text{i}}\int_{0}^{L} {\Theta_{1} {,}_{xxxx} \overline{\Theta }_{1} {\text{d}}x} , \hfill \\ \varsigma_{2} = \frac{{EA_{{\text{p}}} }}{2L}\left( {2\int_{0}^{L} {\Theta_{1} ,_{xx} \overline{\Theta }_{1} {\text{d}}x} \int_{0}^{L} {\Theta_{1} ,_{x} \overline{\Theta }_{1} ,_{x} {\text{d}}x} + \int_{0}^{L} {\overline{\Theta }_{1} ,_{xx} \overline{\Theta }_{1} {\text{d}}x} \int_{0}^{L} {\Theta_{1} ,_{x}^{2} {\text{d}}x} } \right), \hfill \\ \varsigma_{3} = \rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0} \Gamma_{1} {\text{i}}\int_{0}^{L} {\overline{\Theta }_{1} {,}_{xx} \overline{\Theta }_{1} {\text{d}}x} - \frac{{\varepsilon^{2} \sigma_{1} }}{2}\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{1} \int_{0}^{L} {\overline{\Theta }_{1} {,}_{x} \overline{\Theta }_{1} {\text{d}}x} , \hfill \\ \varsigma_{4} = \frac{{\text{i}}}{2}\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)\left( {\omega_{1} + \varepsilon^{2} \sigma_{2} } \right)^{2} \int_{0}^{L} {\overline{\Theta }_{1} {\text{d}}x} \hfill \\ \end{gathered} $$
(43)

In Sect. 3.2, the equations for T1 and T2 scales are represented as:

for coefficients of ε1

$$ \begin{gathered} EI_{{\text{p}}} v_{1} ,_{xxxx} + \left( {\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0}^{2} - P_{0} + EA_{{\text{p}}} \varsigma \Delta T} \right)v_{1} ,_{xx} + 2\rho_{{\text{f}}} A_{{\text{f}}} \left( {\Gamma_{0} {\text{D}}_{1} v_{0} ,_{x} + \Gamma_{0} {\text{D}}_{0} v_{1} ,_{x} } \right) \hfill \\ + \left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right){\text{D}}_{0}^{2} v_{1} + 2\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right){\text{D}}_{0} {\text{D}}_{1} v_{0} + 2\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0} \Gamma_{1} \sin \left( {\Omega_{1} T_{0} } \right)\hat{v},_{xx} \hfill \\ + \rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{1} \Omega_{1} \cos \left( {\Omega_{1} T_{0} } \right)\hat{v},_{x} - \frac{{EA_{{\text{p}}} }}{2L}v_{1} ,_{xx} \int_{0}^{L} {\left( {\hat{v},_{x} } \right)^{2} } {\text{d}}x - \frac{{EA_{{\text{p}}} }}{L}v_{0} ,_{xx} \int_{0}^{L} {\hat{v},_{x} v_{0} ,_{x} } {\text{d}}x \hfill \\ - \frac{{EA_{{\text{p}}} }}{L}\hat{v},_{xx} \int_{0}^{L} {\hat{v},_{x} v_{1} ,_{x} } {\text{d}}x - \frac{{EA_{{\text{p}}} }}{2L}\hat{v},_{xx} \int_{0}^{L} {\left( {v_{0} ,_{x} } \right)}^{2} {\text{d}}x = 0 \hfill \\ \end{gathered} $$
(44)

and for coefficients of ε2

$$ \begin{gathered} EI_{{\text{p}}} v_{2} ,_{xxxx} + 2\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0} \Gamma_{1} \sin \left( {\Omega_{1} t} \right)v_{0} ,_{xx} + \left( {\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0}^{2} - P_{0} + EA_{{\text{p}}} \varsigma \Delta T} \right)v_{2} ,_{xx} \hfill \\ + 2\rho_{{\text{f}}} A_{{\text{f}}} \left[ {\Gamma_{0} {\text{D}}_{1} v_{1} ,_{x} + \Gamma_{0} {\text{D}}_{2} v_{0} ,_{x} + \Gamma_{0} {\text{D}}_{0} v_{2} ,_{x} + \Gamma_{1} \sin \left( {\Omega_{1} t} \right){\text{D}}_{0} v_{0} ,_{x} } \right] \hfill \\ + \left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)\left( {{\text{D}}_{0}^{2} v_{2} + {\text{D}}_{1}^{2} v_{0} } \right) + \rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{1} \Omega_{1} \cos \left( {\Omega_{1} t} \right)v_{0} ,_{x} \hfill \\ + 2\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)\left( {{\text{D}}_{0} {\text{D}}_{2} v_{0} + {\text{D}}_{0} {\text{D}}_{1} v_{1} } \right) + \alpha I_{{\text{p}}} {\text{D}}_{0} v_{0} ,_{xxxx} \hfill \\ - \frac{{EA_{{\text{p}}} }}{2L}v_{2} ,_{xx} \int_{0}^{L} {\left( {\hat{v},_{x} } \right)^{2} } {\text{d}}x - \frac{{EA_{{\text{p}}} }}{L}v_{1} ,_{xx} \int_{0}^{L} {\hat{v},_{x} v_{0} ,_{x} } {\text{d}}x \hfill \\ - \frac{{EA_{{\text{p}}} }}{2L}v_{0} ,_{xx} \int_{0}^{L} {\left[ {2v_{1} ,_{x} \hat{v},_{x} + \left( {v_{0} ,_{x} } \right)^{2} } \right]} {\text{d}}x - \frac{{EA_{{\text{p}}} }}{L}\hat{v},_{xx} \int_{0}^{L} {\left( {\hat{v},_{x} v_{2} ,_{x} + v_{0} ,_{x} v_{1} ,_{x} } \right)} {\text{d}}x \hfill \\ - \frac{{\alpha A_{{\text{p}}} }}{L}\hat{v},_{xx} \int_{0}^{L} {{\text{D}}_{0} v_{0} ,_{x} \hat{v},_{x} } {\text{d}}x - \frac{{\alpha A_{{\text{p}}} }}{2L}{\text{D}}_{0} v_{0} ,_{xx} \int_{0}^{L} {\left( {\hat{v},_{x} } \right)^{2} } {\text{d}}x \hfill \\ - \left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)B\Omega_{2}^{2} \sin \left( {\Omega_{2} t} \right) = 0 \hfill \\ \end{gathered} $$
(45)

In Sect. 3.2, the variable of Eq. (23) is represented as:

$$ \begin{gathered} \xi_{0} = - 2\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0} \int_{0}^{L} {\overline{\Phi }_{1} } \Phi_{1} ,_{x} {\text{d}}x - 2{\text{i}}\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)\omega_{1} \int_{0}^{L} {\overline{\Phi }_{1} } \Phi_{1} {\text{d}}x, \\ \xi_{1} = - {\text{i}}I_{{\text{p}}} \omega_{\sup - 1} \int_{0}^{L} {\overline{\Phi }_{1} } \Phi_{1} ,_{xxxx} {\text{d}}x + \frac{{{\text{i}}\omega_{\sup - 1} A_{{\text{p}}} }}{2L}\left[ \begin{gathered} \int_{0}^{L} {\overline{\Phi }_{1} } \Phi_{1} ,_{xx} {\text{d}}x\int_{0}^{L} {\left( {\hat{v},_{x}^{ + } } \right)^{2} } {\text{d}}x \hfill \\ + 2\int_{0}^{L} {\overline{\Phi }_{1} } \hat{v},_{xx}^{ + } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \Phi_{1} ,_{x} } {\text{d}}x \hfill \\ \end{gathered} \right], \\ \end{gathered} $$
(46)
$$ \xi_{2} = \frac{{EA_{{\text{p}}} }}{L}\left[ \begin{gathered} \int_{0}^{L} {\frac{{\partial^{2} M_{1} \left( {x,T_{2} } \right)}}{{\partial x^{2} }}\overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \overline{\Phi }_{1} ,_{x} } {\text{d}}x + \int_{0}^{L} {\overline{\Phi }_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \frac{{\partial M_{1} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x \hfill \\ + \int_{0}^{L} {\hat{v},_{xx}^{ + } \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\overline{\Phi }_{1} ,_{x} \frac{{\partial M_{1} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x + \int_{0}^{L} {\frac{{\partial^{2} M_{3} \left( {x,T_{2} } \right)}}{{\partial x^{2} }}\overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \Phi_{1} ,_{x} } {\text{d}}x \hfill \\ + \int_{0}^{L} {\Phi_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \frac{{\partial M_{3} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x + \int_{0}^{L} {\hat{v},_{xx}^{ + } \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\Phi_{1} ,_{x} \frac{{\partial M_{3} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x \hfill \\ + \int_{0}^{L} {\Phi_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\overline{\Phi }_{1} ,_{x} \Phi_{1} ,_{x} } {\text{d}}x + \frac{1}{2}\int_{0}^{L} {\overline{\Phi }_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\Phi_{1} ,_{x}^{2} } {\text{d}}x \hfill \\ \end{gathered} \right], $$
(47)
$$ \begin{gathered} \xi_{3} = {\text{i}}\rho_{{\text{f}}} A_{{\text{f}}} \Gamma_{0} \Gamma_{1} \int_{0}^{L} {\overline{\Phi }_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x + \frac{{EA_{{\text{p}}} }}{L}\left[ \begin{gathered} \int_{0}^{L} {\frac{{\partial^{2} M_{2} \left( {x,T_{2} } \right)}}{{\partial x^{2} }}\overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \Phi_{1} ,_{x} } {\text{d}}x \hfill \\ + \int_{0}^{L} {\overline{\Phi }_{1} ,_{xx} \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\hat{v},_{x}^{ + } \frac{{\partial M_{2} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x \hfill \\ + \int_{0}^{L} {\hat{v},_{xx}^{ + } \overline{\Phi }_{1} } {\text{d}}x\int_{0}^{L} {\overline{\Phi }_{1} ,_{x} \frac{{\partial M_{2} \left( {x,T_{2} } \right)}}{\partial x}} {\text{d}}x \hfill \\ \end{gathered} \right], \\ \xi_{4} = \frac{{\text{i}}}{2}\left( {\rho_{{\text{p}}} A_{{\text{p}}} + \rho_{{\text{f}}} A_{{\text{f}}} } \right)\left( {\omega_{{\sup { - }1}} + \varepsilon^{2} \sigma_{2} } \right)^{2} \int_{0}^{L} {\overline{\Phi }_{1} {\text{d}}x} \\ \end{gathered} $$
(48)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, SY., Mao, XY., Ding, H. et al. Response of hydraulic pipes to combined excitation in thermal environment. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09713-6

Keywords

Navigation