Skip to main content
Log in

Energy-based initials-boosted firings in memristor synapse-coupled bi-mRulkov neuron network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The energy interaction-induced firing and synchronization activities in existing neuronal networks have recently garnered attention. However, the initials-boosted extreme multistability and synchronization firings supplied by the field energy simulated with memristors have not been extensively documented. Therefore, it is of paramount importance to integrate Hamilton energy and dynamics in exploring these novel behaviors to unveil the physical essence of neuronal firing, enhance network flexibility and controllability, and reinforce the practical value of networks. To address these issues, using a memristor synapse to connect two Rulkov neurons that are exposed to memristive electromagnetic radiation, we construct a bionic memristor synapse-coupled bi-mRulkov neuron network model, known as the bi-mRulkov network. It possesses spatial equilibrium points, topological invariance, and synchronization convergence associated with the initial conditions of memristors. In particular, by establishing quantitative indicators based on the Hamilton energy and synchronization factor, the interesting boosting firing and its energy balance and transition processes are visualized from the two-dimensional plane and local dynamics. Theoretical analysis and numerical simulation demonstrate that the bi-mRulkov network can generate the boosting extreme multistability firing. Furthermore, the complex line-boosted complete synchronization and plane-boosted parallel offset synchronization firings are determined by the memristor-controlled energy balance and transition, respectively. Finally, both the PSpice-based analog circuit and microcontroller-based digital circuit platforms are developed to validate the abundant firing activities, which offers accurate implementation paradigms for the proposed neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Zonta, M., Angulo, M.C., Gobbo, S., et al.: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6(1), 43–50 (2003)

    Article  Google Scholar 

  2. Jeyasothy, A., Sundaram, S., Sundararajan, N.: Sefron: A new spiking neuron model with time-varying synaptic efficacy function for pattern classification. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1231–1240 (2019)

    Article  Google Scholar 

  3. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  5. Chen, M., Luo, X., Zhang, Y., et al.: Initial-boosted behaviors and synchronization of memristor-coupled memristive systems. IEEE Trans. Circuits Syst. I Regul. Pap. 71(2), 781–793 (2024)

    Article  Google Scholar 

  6. Jang, B., Kim, S., Yang, S., et al.: Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Lett. 19(2), 839–849 (2019)

    Article  Google Scholar 

  7. Li, Z., Zhou, H., Wang, M., et al.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Article  Google Scholar 

  8. Hajian, D.N., Ramadoss, J., Natiq, H., et al.: Dynamics of Hindmarsh–Rose neurons connected via adaptive memristive synapse. Chin. J. Phys. 87, 311–329 (2024)

    Article  MathSciNet  Google Scholar 

  9. Lin, H., Wang, C., Sun, Y., et al.: Generating n-scroll chaotic attractors from a memristor-based magnetized Hopfield neural network. IEEE Trans. Circuits Syst II Brief Pap. 70(1), 311–315 (2023)

    Google Scholar 

  10. Zhang, S., Li, C., Zheng, J., et al.: Memristive autapse-coupled neuron model with external electromagnetic radiation effects. IEEE Trans. Ind. Electron. 70(11), 11618–11627 (2023)

    Article  Google Scholar 

  11. Ramakrishnan, B., Mehrabbeik, M., Parastesh, F., et al.: A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electron 11(1), 153 (2022)

    Article  Google Scholar 

  12. Jin, P., Wang, G., Liang, Y., et al.: Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4419–4432 (2021)

    Article  Google Scholar 

  13. Vijay, S.D., Thamilmaran, K., Ahamed, A.I.: Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn. 111(1), 789–799 (2023)

    Article  Google Scholar 

  14. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos Interdiscip. J. Nonlinear Sci. 33(2), 023110 (2023)

    Article  MathSciNet  Google Scholar 

  15. Chen, M., Sun, M., Bao, H., et al.: Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020)

    Article  Google Scholar 

  16. Hens, C.R., Banerjee, R., Feudel, U., et al.: How to obtain extreme multistability in coupled dynamical system. Phys. Rev. E 85(3), 035202 (2012)

    Article  Google Scholar 

  17. Chen, M., Luo, X., Suo, Y., et al.: Hidden extreme multistability and synchronicity of memristor-coupled non-autonomous memristive Fitzhugh–Nagumo models. Nonlinear Dyn. 111(8), 7773–7788 (2023)

    Article  Google Scholar 

  18. Fossi, J.T., Deli, V., Njitacke, Z.T., et al.: Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn. 109(2), 925–942 (2022)

    Article  Google Scholar 

  19. Lin, H., Wang, C., Li, C., et al.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inf. 18(12), 8839–8850 (2022)

    Article  Google Scholar 

  20. Doubla, I.S., Ramakrishnan, B., Njitacke, Z.T., et al.: Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN. Eur. Phys. J. Spec. Top. 231(11), 2371–2385 (2022)

    Article  Google Scholar 

  21. Njitacke, Z.T., Nkapkop, J.D.D., Signing, V.F., et al.: Novel extreme multistable Tabu learning neuron: circuit implementation and application to cryptography. IEEE Trans. Ind. Inf. 19(8), 8943–8952 (2023)

    Article  Google Scholar 

  22. Zhang, S., Zheng, J., Wang, X., et al.: A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solitons Fractals 145, 110761 (2021)

    Article  MathSciNet  Google Scholar 

  23. Lin, H., Wang, C., Yu, F., et al.: A triple-memristor Hopfield neural network with space multistructure attractors and space initial-offset behaviors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(12), 4948–4958 (2023)

    Article  Google Scholar 

  24. Lin, H., Wang, C., Sun, J., et al.: Memristor-coupled asymmetric neural networks: bionic modeling, chaotic dynamics analysis and encryption application. Chaos Solitons Fractals 166, 112905 (2023)

    Article  MathSciNet  Google Scholar 

  25. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    Article  MathSciNet  Google Scholar 

  26. Bao, H., Li, K., Ma, J.: Memristive effects on an improved discrete Rulkov neuron model. Sci. China Tech. Sci. 66(11), 3153–3163 (2023)

    Article  Google Scholar 

  27. Xu, Q., Liu, T., Feng, C., et al.: Continuous non-autonomous memristive Rulkov model with extreme multistability. Chin. Phys. B 30(12), 128702 (2021)

    Article  Google Scholar 

  28. Min, F., Zhai, G., Yin, S., et al.: Switching bifurcation of a Rulkov neuron system with ReLu-type memristor. Nonlinear Dyn. (2024)

  29. Zhang, S., Wang, C., Zhang, H., et al.: A multiplier-free Rulkov neuron under memristive electromagnetic induction: dynamics analysis, energy calculation, and circuit implementation. Chaos Interdiscip. J. Nonlinear Sci. 33(8), 083138 (2023)

    Article  MathSciNet  Google Scholar 

  30. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A 24(2), 109–129 (2023)

    Article  Google Scholar 

  31. Vivekanandhan, G., Mehrabbeik, M., Natiq, H., et al.: Chaotic behavior of the basal ganglia cortical thalamic model for absence seizures: a comprehensive dynamical analysis. Int. J. Bifurc. Chaos 33(11), 2350126 (2023)

    Article  MathSciNet  Google Scholar 

  32. Patel, D.C., Tewar, B.P., Chaunsali, L., et al.: Neuron-glia interactions in the pathophysiology of epileps. Nat. Rev. Neurosci. 20(5), 282–297 (2019)

    Article  Google Scholar 

  33. Xu, Q., Liu, T., Ding, S., et al.: Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction. Cognit. Neurodyn. 17(3), 755–766 (2023)

    Article  Google Scholar 

  34. Ma, M., Lu, Y., Li, Z., et al.: Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal Fract. 7(1), 82 (2023)

    Article  Google Scholar 

  35. Li, K., Bao, B., Ma, J., et al.: Synchronization transitions in a discrete memristor-coupled bi-neuron model. Chaos Solitons Fractals 165, 112861 (2022)

    Article  Google Scholar 

  36. Bao, B., Hu, J., Bao, H., et al.: Memristor-coupled dual-neuron mapping model: initials-induced coexisting firing patterns and synchronization activities. Cognit. Neurodyn. (2023)

  37. Torrealdea, F.J., d’Anjou, A., Graña, M., et al.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74(1), 011905 (2006)

    Article  Google Scholar 

  38. Ma, J.: Energy function for some maps and nonlinear oscillators. Appl. Math. Comput. 463, 128379 (2024)

    Article  MathSciNet  Google Scholar 

  39. Lv, M., Wang, C., Ren, G., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  40. Wang, C., Sun, G., Yang, F., et al.: Capacitive coupling memristive systems for energy balance. AEU Int. J. Electron. Commun. 153, 154280 (2022)

    Article  Google Scholar 

  41. Xie, Y., Zhou, P., Ma, J.: Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl. Math Comput. 113, 175–187 (2023)

    MathSciNet  Google Scholar 

  42. Rajagopal, K., Jafari, S., Li, C., et al.: Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling. Chaos Solitons Fractals 146, 110855 (2021)

    Article  MathSciNet  Google Scholar 

  43. Fossi, J.T., Deli, V., Edima, H.C., et al.: Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction. Eur. Phys. J. B 95(4), 66 (2022)

    Article  Google Scholar 

  44. Sun, J., Li, C., Wang, Z., et al.: Dynamic analysis of HR-FN-HR neural network coupled by locally active hyperbolic memristors and encryption application based on Knuth–Durstenfeld algorithm. Appl. Math. Model. 121, 463–483 (2023)

    Article  MathSciNet  Google Scholar 

  45. Yu, X., Bao, H., Chen, M., et al.: Energy balance via memristor synapse in Morris–Lecar two-neuron network with FPGA implementation. Chaos Solitons Fractals 171, 113442 (2023)

    Article  MathSciNet  Google Scholar 

  46. Bao, H., Yu, X., Zhang, Y., et al.: Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons. Chaos Solitons Fractals 177, 114167 (2023)

    Article  MathSciNet  Google Scholar 

  47. Li, C., Sprott, J., Mei, Y.: An infinite 2-D lattice of strange attractors. Nonlinear Dyn. 89(4), 2629–2639 (2017)

    Article  MathSciNet  Google Scholar 

  48. Li, Y., Li, C., Lei, T., et al.: Offset boosting-entangled complex dynamics in the memristive Rulkov neuron. IEEE Trans. Ind. Electron. (2024)

  49. Dhamala, M., Jirsa, V.K., Ding, M., et al.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)

  50. Etémé, A.S., Tabi, C.B., Beyala Ateba, J.F., et al.: Chaos break and synchrony enrichment within Hindmarsh–Rose-type memristive neural models. Nonlinear Dyn. 105(1), 785–795 (2021)

    Article  Google Scholar 

Download references

Funding

The work was sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant Nos. 2022D01E33 and 2022D01C367), National Natural Science Foundation of China (Grant Nos. 52065064 and 52267010), and Innovation Project for Excellent Doctoral Candidates of Xinjiang University (Grant No. XJU2022BS096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no Conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, H., Lin, H. et al. Energy-based initials-boosted firings in memristor synapse-coupled bi-mRulkov neuron network. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09661-1

Keywords

Navigation