Skip to main content
Log in

Adaptive fixed-time containment control of MIMO nonlinear multiagent systems via dynamic event-triggered communication

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We address the adaptive fixed-time containment (FxTC) control problem of a class of uncertain multi-input multi-output nonlinear multiagent systems using event-triggered inter-agent communication under a directed network. Our primary contribution is to develop multi-leader estimation and dynamic event-triggering strategies to ensure practical fixed-time convergence in a distributed containment control framework. First, an event-triggered mechanism that uses distributed containment errors in the dynamic threshold is introduced to reduce needless data transmissions among agents according to decreasing errors. Subsequently, a multi-leader-estimation-based command-filtered backstepping strategy is established to design a distributed adaptive FxTC controller using only neighbors’ output information. Using the fixed-time stability theory, we show that all closed-loop signals are bounded and all followers can be steered to the convex hull spanned by the leaders within a fixed time, regardless of the initial state conditions. Finally, two simulation examples containing robotic manipulators demonstrate the merits of the suggested control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Wen, S.X., Guo, G., Chen, B., Gao, X.: Cooperative adaptive cruise control of vehicles using a resource-efficient communication mechanism. IEEE Trans. Intell. Veh. 4(1), 127–140 (2019)

    Article  Google Scholar 

  2. Hu, J., Bhowmick, P., Lanzon, A.: Group coordinated control of networked mobile robots with applications to object transportation. IEEE Trans. Veh. Technol. 70(8), 8269–8274 (2021)

    Article  Google Scholar 

  3. Gao, W., Jiang, Y., Davari, M.: Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming. IEEE Trans. Circuits Syst. II Express Briefs 66(3), 447–451 (2019)

    Google Scholar 

  4. Xiao, W.B., Cao, L., Li, H.Y., Lu, R.Q.: Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay. Sci. China-Inf. Sci. 63(3), 132202 (2020)

    Article  MathSciNet  Google Scholar 

  5. Li, Z.K., Ren, W., Liu, X.D., Fu, M.Y.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)

    Article  MathSciNet  Google Scholar 

  6. Wang, P., Jia, Y.: Distributed containment control of second-order multi-agent systems with inherent non-linear dynamics. IET Control Theory Appl. 8(4), 277–287 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wang, Q., Fu, J., Wang, J.: Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics. Syst. Control Lett. 99, 33–39 (2017)

    Article  MathSciNet  Google Scholar 

  8. Yoo, S.J.: Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form. Automatica 49(7), 2145–2153 (2013)

    Article  MathSciNet  Google Scholar 

  9. Mei, J., Ren, W., Ma, G., Li, B.: Distributed containment control for multiple unknown second-order nonlinear systems with application to networked Lagrangian systems. IEEE Trans. Netw. Learn. Syst. 26(9), 1885–1899 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wen, G., Wang, P., Huang, T., Yu, W., Sun, J.: Robust neuro-adaptive containment of multi-leader multi-agent systems with uncertain dynamics. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 406–417 (2019)

    Article  Google Scholar 

  11. Kim, B.M., Yoo, S.J.: Distributed containment control of networked uncertain MIMO pure-feedback nonlinear systems via quantized state feedback and communication. Int. J. Robust Nonlinear Control 32(18), 10029–10051 (2022)

    Article  MathSciNet  Google Scholar 

  12. Åström, K., Bernhardsson, B.: Comparison of periodic and event based sampling for first order stochastic systems. IFAC Proc. 32(2), 5006–5011 (1999)

    Google Scholar 

  13. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Yan, J., Yu, W., Qiu, J.: Adaptive event-triggered control for unknown second-order nonlinear multiagent systems. IEEE Trans. Cybern. 51(12), 6131–6140 (2021)

    Article  Google Scholar 

  15. Wang, W., Wen, C., Huang, J., Zhou, J.: Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults. Automatica 111, 108667 (2020)

    Article  MathSciNet  Google Scholar 

  16. Li, Y.X., Yang, G.H., Tong, S.: Fuzzy adaptive distributed event-triggered consensus control of uncertain nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1777–1786 (2019)

    Article  Google Scholar 

  17. Wang, W., Li, Y., Tong, S.: Neural-network-based adaptive event-triggered consensus control of nonstrict-feedback nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1750–1764 (2021)

    Article  MathSciNet  Google Scholar 

  18. Zhao, Y., Tang, F., Zong, G., Zhao, X., Xu, N.: Event-based adaptive containment control for nonlinear multiagent systems with periodic disturbances. IEEE Trans. Circuits Syst. II Express Briefs 69(12), 5049–5053 (2022)

    Google Scholar 

  19. Yang, Y., Qian, Y.: Event-trigger-based recursive sliding-mode dynamic surface containment control with nonlinear gains for nonlinear multi-agent systems. Inf. Sci. 560, 202–216 (2021)

    Article  MathSciNet  Google Scholar 

  20. Wang, W., Long, J., Zhou, J., Huang, J., Wen, C.: Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication. Automatica 133, 109841 (2021)

    Article  MathSciNet  Google Scholar 

  21. Zhang, L., Che, W., Deng, C., Wu, Z.: Prescribed performance control for multi-agent systems via fuzzy adaptive event-triggered strategy. IEEE Trans. Fuzzy Syst. 30(12), 5078–5090 (2022)

    Article  Google Scholar 

  22. Wang, C., Wen, C., Guo, L., Xing, L.: Adaptive consensus control for nonlinear multiagent systems with unknown control directions using event-triggered communication. IEEE Trans. Cybern. 52(5), 3057–3068 (2022)

    Article  Google Scholar 

  23. Kim, H.J., Yoo, S.J.: Dynamic event-triggered communication-based adaptive consensus tracking of uncertain nonlinear multiagent systems in pure-feedback form. IEEE Access 11, 21092–21103 (2023)

    Article  Google Scholar 

  24. Yang, Y., Qian, Y.: Dynamic event-triggered mechanism-based output consensus of nonlinear multi-agent systems via improved dynamic surface control approach. Int. J. Control 95(12), 3392–3403 (2022)

    Article  MathSciNet  Google Scholar 

  25. Zhou, Q., Wang, W., Ma, H., Li, H.: Event-triggered fuzzy adaptive containment control for nonlinear multiagent systems with unknown Bouc-Wen hysteresis input. IEEE Trans. Fuzzy Syst. 29(4), 731–741 (2021)

    Article  Google Scholar 

  26. Zhou, H., Tong, S.: Adaptive neural network event-triggered output-feedback containment control for nonlinear MASs with input quantization. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2023.3249154, to be published

  27. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  28. Liu, H., Zhang, T.: Adaptive neural network finite-time control for uncertain robotic manipulators. J. Intell. Robot. Syst. 75(3–4), 363–377 (2014)

    Article  Google Scholar 

  29. Wang, H., Kang, S., Feng, Z.: Finite-time adaptive fuzzy command filtered backstepping control for a class of nonlinear systems. Int. J. Fuzzy Syst. 21(8), 2575–2587 (2019)

    Article  MathSciNet  Google Scholar 

  30. Sui, S., Tong, S.C.: Finite-time fuzzy adaptive PPC for nonstrict-feedback nonlinear MIMO systems. IEEE Trans. Cybern. 53(2), 732–742 (2023)

    Article  Google Scholar 

  31. Li, Y., Qu, F., Tong, S.: Observer-Based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay. IEEE Trans. Cybern. 51(1), 126–137 (2021)

    Article  Google Scholar 

  32. Zhao, L., Chen, X., Yu, J.P., Shi, P.: Output feedback-based neural adaptive finite-time containment control of non-strict feedback nonlinear multi-agent systems. IEEE Trans. Syst. Man Cybern. Syst. 69(2), 847–858 (2022)

    Google Scholar 

  33. Tong, S., Zhou, H.: Finite-time adaptive fuzzy event-triggered output-feedback containment control for nonlinear multi-agent systems with input saturation. IEEE Trans. Fuzzy Syst. 31(9), 3135–3147 (2023)

    Article  Google Scholar 

  34. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sui, S., Chen, C.P., Tong, S.: A novel full errors fixed-time control for constraint nonlinear systems. IEEE Trans. Autom. Control 68(4), 2568–2576 (2023)

    Article  MathSciNet  Google Scholar 

  36. Chen, M., Li, Y., Wang, H., Peng, K., Wu, L.: Adaptive fixed-time tracking control for nonlinear systems based on finite-time command-filtered backstepping. IEEE Trans. Fuzzy Syst. 31(5), 1604–1613 (2023)

    Article  Google Scholar 

  37. Fu, J., Wang, J.: Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst. Control Lett. 93, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  38. Tian, B., Lu, H., Zuo, Z., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybern. 49(4), 1545–1550 (2019)

    Article  Google Scholar 

  39. Wang, L.X., Liu, X.Y., Cao, J.D., Hu, X.T.: Fixed-time containment control for nonlinear multi-agent systems with external disturbances. IEEE Trans. Circuits Syst. II Express Briefs 69(2), 459–463 (2022)

    Google Scholar 

  40. Cai, Y., Dai, J., Zhang, H., Wang, Y.: Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism. Appl. Math. Comput. 396, 125881 (2021)

    MathSciNet  Google Scholar 

  41. Wu, W., Tong, S.: Fixed-time adaptive fuzzy containment dynamic surface control for nonlinear multi-agent systems. IEEE Trans. Fuzzy Syst. 30(12), 5237–5248 (2022)

    Article  Google Scholar 

  42. Wu, Y., Ma, H., Chen, M., Li, H.: Observer-based fixed-time adaptive fuzzy bipartite containment control for multi-agent systems with unknown hysteresis. IEEE Trans. Fuzzy Syst. 30(5), 1302–1312 (2022)

    Article  Google Scholar 

  43. Guo, X., Ma, H., Liang, H., Zhang, H.: Command-filter-based fixed-time bipartite containment control for a class of stochastic multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 52(6), 3519–3529 (2022)

    Article  Google Scholar 

  44. Shan, H., Xue, H., Jia, T., Pan, Y., Zhao, M.: Fixed-time nonsingular adaptive containment control for uncertain nonlinear multi-agent systems with predefined accuracy. Int. J. Adapt. Control Signal Process. 36(10), 2433–2452 (2022)

    Article  MathSciNet  Google Scholar 

  45. Yao, D., Dou, C., Yue, D., Xie, X.: Event-triggered practical fixed-time fuzzy containment control for stochastic multiagent systems. IEEE Trans. Fuzzy Syst. 30(8), 3052–3062 (2022)

    Article  Google Scholar 

  46. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  47. Zuo, Z., Tian, B., Defoort, M., Ding, Z.: Fixed-time consensus tracking for multi-agent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2018)

    Article  Google Scholar 

  48. Yang, Y., Niu, Y.: Fixed-time adaptive fuzzy control for uncertain non-linear systems under event-triggered strategy. IET Control Theory Appl. 14(14), 1845–1854 (2020)

    Article  MathSciNet  Google Scholar 

  49. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    Article  MathSciNet  Google Scholar 

  50. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neur. Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  51. Ge, S., Hang, C., Lee, T.: Stable Adaptive Neural Network Control. Springer, Berlin (2002)

    Book  Google Scholar 

  52. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)

    Book  Google Scholar 

  53. Shen, Q., Shi, P.: Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form. Automatica 53, 120–124 (2015)

    Article  MathSciNet  Google Scholar 

  54. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York, NY, USA (1995)

    Google Scholar 

  55. Levant, A.: Higher-order sliding modes, differentiation and outputfeedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  Google Scholar 

  56. Lee, K.W., Khalil, H.K.: Adaptive output feedback control of robot manipulators using high-gain observer. Int. J. Control 67(6), 869–886 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00334939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jin Yoo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Competing interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 A. Proof of Lemma 9

The following well-known lemma is required to prove Lemma 9.

Lemma 10

[55] Consider \(\alpha _{i,k,l}\) with input noises satisfying \(|\alpha _{i,k,l}\) \(-\alpha _{i,k,l0}|<\o _{i,k,l}\) with a constant \(\o _{i,k,l}\). Then the following inequalities are satisfied: \(|\sigma _{i,k,l,1}-\alpha _{i,k,l0}| \le K_{1}\o _{i,k,l} = \varDelta _{i,k,l}\) and \(|\varUpsilon _{i,k,l,1}-\dot{\alpha }_{i,k,l0}| \le K_{2}\o ^{\frac{1}{2}}_{i,k,l} = \bar{\varDelta }_{i,k,l}\), where \(K_{1}\), \(K_{2}\), \(\varDelta _{i,k,l}\), and \(\bar{\varDelta }_{i,k,l}\) are positive constants.

Now, let us prove Lemma 9. Select a Lyapunov function \(V_{\varXi }=\sum _{i=1}^{N}\sum _{k=1}^{n_{i}}\varXi ^{\top }_{i,k}\varXi _{i,k}/2\). The time derivative \(\dot{V}_{\varXi }\) using (14) and Lemma 10 is obtained as

$$\begin{aligned} \dot{V}_{\varXi }&\le -\sum _{i=1}^{N}\sum _{k=1}^{n_{i}} \bigg [4C_{i,k1} \left( \frac{\Vert \varXi _{i,k}\Vert ^{2}}{2} \right) ^{2}\nonumber \\&\qquad \qquad \quad -\sum _{q=1}^{m}(\kappa _{i,k}-\varDelta _{i,k})|\varXi _{i,k,q}| \bigg ] \end{aligned}$$
(64)

where \(\varDelta _{i,k}=\max \{\varDelta _{i,k,1},\dots ,\varDelta _{i,k,m}\}\).

By defining \(\bar{C}=\min _{i \in \mathcal {\bar{V}}_{F}}\{C_{i,k1}\}\) and \(\bar{\kappa }=\min _{i \in \mathcal {\bar{V}}_{F}}\) \(\{\kappa _{i,k}-\varDelta _{i,k}\}\) with \(k=1,\dots ,n_{i}\), choosing the proper parameter \(\kappa _{i,k}\) such that \(\kappa _{i,k}>\varDelta _{i,k}\), and using Lemmas 4 and 5, we have \(-\sum _{i=1}^{N}\sum _{k=1}^{n_{i}}\sum _{q=1}^{m}(\kappa _{i,k}-\varDelta _{i,k})|\varXi _{i,k,q}| \le -\sqrt{2}\bar{\kappa } (\sum _{i=1}^{N}\sum _{k=1}^{n_{i}}\) \(\Vert \varXi _{i,k}\Vert ^{2}/2)^{\frac{1}{2}}\) and \(-\sum _{i=1}^{N}\sum _{k=1}^{n_{i}}4C_{i,k1}( \Vert \varXi _{i,k}\Vert ^{2}/2)^{2} \le - \frac{4\bar{C}}{Nn_{i}} (\) \(\sum _{i=1}^{N}\sum _{k=1}^{n_{i}}(\Vert \varXi _{i,k}\Vert ^{2}/2))^{2}\). From Lemmas 4 and 10, we can obtain \(\dot{V}_{\varXi } \le -\hat{C}V_{\varXi }^{2}-\hat{\kappa }V^{\frac{1}{2}}_{\varXi }\), where \(\hat{C}=4\bar{C}/Nn_{i}\) and \(\hat{\kappa }=\sqrt{2}\bar{\kappa }\). Then, Lemma 1 leads to the convergence of \(\varXi _{i,k}\) to zero in the fixed time, and the bound of the settling time \(T_{1}\) is represented by \(T_{1}=(1/\hat{C})+(2/\hat{\kappa })\).

1.2 B. System matrices of two-link robot manipulators [56]

The system matrices are defined as

$$\begin{aligned} F_{i}(Q_{i})&= \left[ \begin{array}{cc} F_{i,11} &{} F_{i,12} \\ F_{i,12} &{} F_{i,22} \\ \end{array} \right] , \\ Z_{i}(Q_{i},\dot{Q}_{i})&= \left[ \begin{array}{cc} Z_{i,11} &{} Z_{i,12} \\ Z_{i,21} &{} 0 \\ \end{array} \right] \\ G_{i}(Q_{i})&= [G_{i,1}(Q_{i}), G_{i,2}(Q_{i})]^{\top } \end{aligned}$$

where \(F_{i,11}=m_{i,1}l_{i,c1}^{2}+m_{i,2}l_{i,1}^{2}+m_{i,2}l_{i,c2}^{2} + 2m_{i,2}l_{i,1}l_{i,c2}\cos q_{i,2}\) \(+ I_{i,1}+I_{i,2}\), \(F_{i,12}=m_{i,2}l_{i,c2}^{2}+m_{i,2}l_{i,1}l_{i,c2}\cos q_{i,2} + I_{i,2}\), \(F_{i,22}=m_{i,2}l_{i,c2}^{2} + I_{i,2}\), \(Z_{i,11}=-h_{i}\dot{q}_{i,2}\), \(Z_{i,12}=-h_{i}(\dot{q}_{i,1} + \dot{q}_{i,2})\), \(Z_{i,21}=h_{i}\dot{q}_{i,1}\), \(h_{i}=m_{i,2}l_{i,1}l_{i,c2}\sin q_{i,2}\), \(G_{i,1}=(m_{i,1}l_{i,c1}+m_{i,2}l_{i,1})g\cos q_{i,1} + m_{i,2}l_{i,c2}g\cos (q_{i,1} + q_{i,2})\), and \(G_{i,2}=m_{i,2}l_{i,c2}\) \(g\cos (q_{i,1} + q_{i,2})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Yoo, S.J. Adaptive fixed-time containment control of MIMO nonlinear multiagent systems via dynamic event-triggered communication. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09621-9

Keywords

Navigation