Skip to main content
Log in

An image autonomous selection encryption algorithm based on the delay exponential logistic chaotic model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent decades, many excellent holistic image encryption schemes have been proposed. However, considering the practical application environment, only specific content in the image needs to be encrypted. Therefore, this paper proposes a chaos-based image encryption algorithm for the specific content of images. First, we propose a new chaotic map called Delay Exponential Logistic Chaotic Model. The simulation experiments show that the chaotic model has superior chaotic properties and produces complex pseudo-random sequences. Second, we set a sliding window on the image while segmenting the image inside the window using the DeepLab V3 semantic segmentation model trained on the cityscape dataset. Finally, the regions that exist to specific contents are encrypted using the proposed encryption algorithm. The simulation experiments show that our chaotic encryption algorithm has favorable encryption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Algorithm 1
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

The data presented in this study are available on request from the corresponding author.

References

  1. Gao, L., Song, J., Liu, X., Shao, J., Liu, J., Shao, J.: Learning in high-dimensional multimedia data: the state of the art. Multimedia Syst., pp. 303–313 (2017). https://doi.org/10.1007/s00530-015-0494-1

  2. Mohanarathinam, A., Kamalraj, S., Prasanna Venkatesan, G.K.D., Ravi, R.V., Manikandababu, C.S.: Digital watermarking techniques for image security: a review. J. Ambient Intell. Human. Comput., pp. 3221–3229 (2020). https://doi.org/10.1007/s12652-019-01500-1

  3. Singh, M., Singh, A.K.: A comprehensive survey on encryption techniques for digital images. Multimed Tools Appl 82, 11155–11187 (2023). https://doi.org/10.1007/s11042-022-12791-6

    Article  Google Scholar 

  4. Singh, J., Ramachandra, R.: Deep composite face image attacks: generation, vulnerability and detection. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3261247

    Article  Google Scholar 

  5. Zia, U., McCartney, M., Scotney, B., Martinez, J., AbuTair, M., Memon, J., Sajjad, A.: Survey on image encryption techniques using chaotic maps in spatial, transform and spatiotemporal domains. Int. J. Information Security. 917–935 (2022). https://doi.org/10.1007/s10207-022-00588-5

  6. Habek, M., Genc, Y., Aytas, N., Akkoc, A., Afacan, E., Yazgan, E.: Digital Image Encryption Using Elliptic Curve Cryptography: A Review. In: 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). pp. 1–8 (2022). https://doi.org/10.1109/hora55278.2022.9800074

  7. Gao, X., Mou, J., Banerjee, S., Cao, Y., Xiong, L., Chen, X.: An effective multiple-image encryption algorithm based on 3D cube and hyperchaotic map. J. King Saud Univ. Comput. Inf. Sci. 34, 1535–1551 (2022). https://doi.org/10.1016/j.jksuci.2022.01.017

    Article  Google Scholar 

  8. Ye, G., Liu, M., Wu, M.: Double image encryption algorithm based on compressive sensing and elliptic curve. Alex. Eng. J. 61, 6785–6795 (2022). https://doi.org/10.1016/j.aej.2021.12.023

    Article  Google Scholar 

  9. Huang, X., Dong, Y., Zhu, H., Ye, G.: Visually asymmetric image encryption algorithm based on SHA-3 and compressive sensing by embedding encrypted image. Alex. Eng. J. 61, 7637–7647 (2022). https://doi.org/10.1016/j.aej.2022.01.015

    Article  Google Scholar 

  10. Kaur, M., Kumar, V.: A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 27, 15–43 (2020). https://doi.org/10.1007/s11831-018-9298-8

    Article  MathSciNet  Google Scholar 

  11. Elkandoz, M.T., Alexan, W.: Image encryption based on a combination of multiple chaotic maps. Multimedia Tools Appl. 81, 25497–25518 (2022). https://doi.org/10.1007/s11042-022-12595-8

    Article  Google Scholar 

  12. Masood, F., Driss, M., Boulila, W., Ahmad, J., Rehman, S.U., Jan, S.U., Qayyum, A., Buchanan, W.J.: A lightweight chaos-based medical image encryption scheme using random shuffling and XOR operations. Wireless Personal Commun., pp. 1405–1432 (2022). https://doi.org/10.1007/s11277-021-08584-z

  13. Gao, X., Mou, J., Xiong, L., Sha, Y., Yan, H., Cao, Y.: A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn., pp. 613–636 (2022). https://doi.org/10.1007/s11071-021-07192-7

  14. Gong, L.-H., Luo, H.-X., Wu, R.-Q., Zhou, N.-R.: New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG. Phys. A Stat. Mech. Appl., 591, 126793 (2022). https://doi.org/10.1016/j.physa.2021.126793

  15. Kiran, Parameshachari, B.D., Panduranga, H.T.: Medical image encryption using SCAN technique and chaotic tent map system. In: Adv. Intell. Syst. Comput. Recent Adv. Artif. Intell. Data Eng., pp. 181–193 (2022). https://doi.org/10.1007/978-981-16-3342-3_15

  16. Zhang, B., Liu, L.: Chaos-based image encryption: review, application, and challenges. Mathematics 11(11), 2585 (2023). https://doi.org/10.3390/math11112585

    Article  Google Scholar 

  17. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3213–3223 (2016). https://doi.org/10.1109/cvpr.2016.350

  18. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv: Computer Vision and Pattern Recognition,arXiv: Computer Vision and Pattern Recognition. arXiv preprint arXiv: 1706.05587 (2017). https://doi.org/10.48550/arXiv.1706.05587

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3431–3440 (2015). https://doi.org/10.1109/cvpr.2015.7298965

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science,Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  21. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, AlanL.: Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Le Centre pour la Communication Scientifique Directe - HAL - Diderot,Le Centre pour la Communication Scientifique Directe - HAL - Diderot. arXiv preprint arXiv:1412.7062 (2015). https://doi.org/10.48550/arXiv.1412.7062

  22. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell., pp. 834–848 (2018). https://doi.org/10.1109/tpami.2017.2699184

  23. Ding, Y., Duan, Z., Li, S.: 2D arcsine and sine combined logistic map for image encryption. Vis. Comput. 39, 1517–1532 (2022). https://doi.org/10.1007/s00371-022-02426-0

    Article  Google Scholar 

  24. Suman, R.R., Mondal, B., Mandal, T.: A secure encryption scheme using a composite logistic sine map (CLSM) and SHA-256. Multimedia Tools Appl. 81, 27089–27110 (2022). https://doi.org/10.1007/s11042-021-11460-4

    Article  Google Scholar 

  25. Liu, X., Xiao, D., Liu, C.: Quantum image encryption algorithm based on bit-plane permutation and sine logistic map. Quant. Inf. Process., 19, 239. https://doi.org/10.1007/s11128-020-02739-w

  26. Cun, Q., Tong, X., Wang, Z., Zhang, M.: Selective image encryption method based on dynamic DNA coding and new chaotic map. Optik 243, 167286 (2021). https://doi.org/10.1016/j.ijleo.2021.167286

    Article  Google Scholar 

  27. Alexan, W., Elkandoz, M., Mashaly, M., Azab, E., Aboshousha, A.: Color image encryption through chaos and KAA map. IEEE Access. 11, 11541–11554 (2023). https://doi.org/10.1109/access.2023.3242311

    Article  Google Scholar 

  28. Shao, S., Li, J., Shao, P., Xu, G.: Chaotic image encryption using piecewise-logistic-sine map. IEEE Access, 11, 27477–27488. https://doi.org/10.1109/ACCESS.2023.3257349

  29. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006). https://doi.org/10.1016/j.imavis.2006.02.021

    Article  Google Scholar 

  30. Nerenberg, M.A.H., Essex, C.: Correlation dimension and systematic geometric effects. Phys. Rev. A 42, 7065–7074 (2002). https://doi.org/10.1103/physreva.42.7065

    Article  MathSciNet  Google Scholar 

  31. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002). https://doi.org/10.1103/physrevlett.88.174102

    Article  Google Scholar 

  32. Hosny, K., Kamal, S., Darwish, M.: A color image encryption technique using block scrambling and chaos. Multimed Tools Appl 81, 505–525 (2022). https://doi.org/10.1007/s11042-021-11384-z

    Article  Google Scholar 

  33. Wang, J., Liu, L., Xu, M., Li, X.: A novel content-selected image encryption algorithm based on the chaotic model. J. King Saud Univ. Comput. Inf. Sci. 34(10), 8245–8259 (2022). https://doi.org/10.1016/j.jksuci.2022.08.007

    Article  Google Scholar 

  34. Wang, X., Gao, S.: A chaotic image encryption algorithm based on a counting system and the semi-tensor product. Multimedia Tools Appl. 80, 10301–10322 (2021). https://doi.org/10.1007/s11042-020-10101-6

    Article  Google Scholar 

  35. Xian, Y., Wang, X.: Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021). https://doi.org/10.1016/j.ins.2020.09.055

    Article  MathSciNet  Google Scholar 

  36. Song, W., Fu, C., Zheng, Y., Cao, L., Tie, M., Sham, C.-W.: Protection of image ROI using chaos-based encryption and DCNN-based object detection. Neural Comput. Appl. 34, 5743–5756 (2022). https://doi.org/10.1007/s00521-021-06725-w

    Article  Google Scholar 

  37. Singh, K., Singh, O., Baranwal, N., Singh, A.: An efficient chaos-based image encryption algorithm using real-time object detection for smart city applications. Sustain Energy Technol. Assess. 53, 102566. https://doi.org/10.1016/j.seta.2022.102566

  38. Teng, L., Wang, X., Yang, F., Xian, Y.: Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion. Nonlinear Dyn. 105, 1859–1876 (2021). https://doi.org/10.1007/s11071-021-06663-1

    Article  Google Scholar 

  39. Tang, J., Yu, Z., Liu, L.: A delay coupling method to reduce the dynamical degradation of digital chaotic maps and its application for image encryption. Multimedia Tools Appl. 78, 24765–24788 (2019). https://doi.org/10.1007/s11042-019-7602-8

    Article  Google Scholar 

  40. Pincus, StevenM., Gladstone, IgorM., Ehrenkranz, RichardA.: A regularity statistic for medical data analysis (1991).

Download references

Funding

This work is supported by National Natural Science Foundation of China (62262039); Outstanding Youth Foundation of Jiangxi Province (20212ACB212006); Key Project of Jiangxi Provincial Natural Science Foundation (20232ACB202009).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LL; methodology, WX; software, WX; formal analysis, WX; data curation, WX; writing—original draft preparation, WX; writing—review and editing, WX and LL; funding acquisition, LL and WX. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lingfeng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Liu, L. An image autonomous selection encryption algorithm based on the delay exponential logistic chaotic model. Nonlinear Dyn 112, 11501–11522 (2024). https://doi.org/10.1007/s11071-024-09616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09616-6

Keywords

Navigation