Skip to main content
Log in

Modeling and vibration analyzing of a double-beam system with a coupling nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Elastic beams are applied to various complex engineering structures in engineering fields. Unwanted vibration of elastic beams may cause some serious vibration problems for complex structures. The current studies mainly focus on the vibration control of the single-beam system by employing nonlinear energy sinks. Little literature combines the NES with nonlinear couplers, limiting the vibration control of the coupling beam system by employing nonlinearities. Motivated by the limitations of current studies, a type of coupling nonlinear energy sink (CNES) is proposed and the vibration prediction model of the double-beam system (DBS) with a coupling nonlinear energy sink (CNES) is established theoretically. After ensuring the correctness of numerical results, vibration responses of DBS with a CNES are deeply studied. According to the numerical analysis and discussion, it can be found that suitable parameters of CNES can effectively reduce the vibration of DBS without changing the vibration characteristics of DBS. Unsuitable parameters of CNES not only motivate complicated responses but also worsen the vibration reduction rate of DBS. Under complicated responses, the vibration kinetic energy of DBS and CNES presents the targeted energy transfer phenomenon at some time intervals. Furthermore, choosing suitable parameters of CNES to change within a certain range greatly influences the magnitude-frequency responses of DBS. Overall, the vibration of suB-beams can be simultaneously controlled by employing the CNES, presenting that installing CNES on DBS provides a feasible way to control the vibration of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding and first authors upon reasonable request.

References

  1. Li, W.L., Bonilha, M.W., Xiao, J.: Vibrations and power flows in a coupled beam system. J. Vib. Acoust. 129, 616–622 (2007)

    Article  Google Scholar 

  2. Gürgöze, M., Erdoğan, G., Inceoğlu, S.: Bending vibrations of beams coupled by a double spring-mass system. J. Sound Vib. 243(2), 361–369 (2001)

    Article  Google Scholar 

  3. Mohammad, R.-P., Seyed, M.H.: Free vibration analysis of a double-beam system joined by a mass-spring device. J. Vib. Control 22(13), 3004–3017 (2016)

    Article  MathSciNet  Google Scholar 

  4. Mohammad, R.-P., Ahmad, A.S., Seyed, M.H.: Analyzing free vibration of a double-beam joined by a three-degree-of-freedom system. J. Braz. Soc. Mech. Sci. Eng. 41, 211 (2019)

    Article  Google Scholar 

  5. Oniszczuk, Z.: Free transverse vibrations of elastically connected simply supported double-beam complex system. J. Sound Vib. 232(2), 387–403 (2000)

    Article  Google Scholar 

  6. Oniszczuk, Z.: Forced transverse vibrations of an elastically connected complex simply supported double-beam system. J. Sound Vib. 264, 273–286 (2003)

    Article  Google Scholar 

  7. Vu, H.V., Ordóñez, A.M., Karnopp, B.H.: Vibration of a double-beam system. J. Sound Vib. 229(4), 807–822 (2000)

    Article  Google Scholar 

  8. Abu-Hilal, M.: Dynamic response of a double Euler-Bernoulli beam due to a moving constant load. J. Sound Vib. 297, 477–491 (2006)

    Article  Google Scholar 

  9. Zhang, Y.Q., Lu, Y., Wang, S.L., Liu, X.: Vibration and buckling of a double-beam system under compressive axial loading. J. Sound Vib. 318, 341–352 (2008)

    Article  Google Scholar 

  10. Stojanović, V., Kozić, P.: Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load. Int. J. Mech. Sci. 60, 59–71 (2012)

    Article  Google Scholar 

  11. Mao, Q., Wattanasakulpong, N.: Vibration and stability of a double-beam system interconnected by an elastic foundation under conservative and nonconservative axial forces. Int. J. Mech. Sci. 93, 1–7 (2015)

    Article  Google Scholar 

  12. Han, F., Dan, D., Cheng, W.: An exact solution for dynamic analysis of a complex double-beam system. Compos. Struct. 193, 295–305 (2018)

    Article  Google Scholar 

  13. Han, F., Dan, D., Cheng, W., Zang, J.: A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Appl. Math. Model. 80, 911–928 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zhao, X.: Solution to vibrations of double-beam systems under general boundary conditions. J. Eng. Mech. 147(10), 04021073 (2021)

    Article  Google Scholar 

  15. Palmeri, A., Adhikari, S.: A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer. J. Sound Vib. 330, 6372–6386 (2011)

    Article  Google Scholar 

  16. Li, Y., Xiong, F., Xie, L., Sun, L.: State-space approach for transverse vibration of double-beam systems. Int. J. Mech. Sci. 189, 105974 (2021)

    Article  Google Scholar 

  17. Huang, M., Liu, J.K.: Substructural method for vibration analysis of the elastically connected double-beam system. Adv. Struct. Eng. 16(2), 365–377 (2013)

    Article  Google Scholar 

  18. Hao, Q., Zhai, W., Chen, Z.: Free vibration of connected double-beam system with general boundary conditions by a modified Fourier-Ritz method. Arch. Appl. Mech. 88, 741–754 (2018)

    Article  Google Scholar 

  19. Liu, S., Yang, B.: A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems. Compos. Struct. 212, 598–608 (2019)

    Article  Google Scholar 

  20. Brennan, M.J.: Control of flexural waves on a beam using a tunable vibration neutralizer. J. Sound Vib. 222(3), 389–407 (1998)

    Article  Google Scholar 

  21. Bonsel, J.H., Fey, R.H.B., Nijmeijer, H.: Application of a dynamic vibration absorber to a piecewise linear beam system. Nonlinear Dyn. 37, 227–243 (2004)

    Article  Google Scholar 

  22. El-Khatib, H.M., Mace, B.R., Brennan, M.J.: Suppression of bending waves in a beam using a tuned vibration absorber. J. Sound Vib. 288(4–5), 1157–1175 (2005)

    Article  Google Scholar 

  23. Thompson, D.J.: A continuous damped vibration absorber to reduce broad-band wave propagation in beams. J. Sound Vib. 311, 824–842 (2008)

    Article  Google Scholar 

  24. Chen, R., Wu, T.: Vibration reduction in a periodic truss beam carrying locally resonant oscillators. J. Vib. Control 22(1), 270–285 (2014)

    Article  Google Scholar 

  25. Han, F., Dan, D., Deng, Z.: A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports. Mech. Syst. Signal Process. 146, 106978 (2021)

    Article  Google Scholar 

  26. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019)

    Article  Google Scholar 

  27. Ding, H., Chen, L.-Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Article  Google Scholar 

  28. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    Article  Google Scholar 

  29. Samani, F.S., Pellicano, F.: Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. J. Sound Vib. 325, 742–754 (2009)

    Article  Google Scholar 

  30. Samani, F.S., Pellicano, F.: Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers. J. Sound Vib. 331, 2272–2290 (2012)

    Article  Google Scholar 

  31. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012)

    Article  Google Scholar 

  32. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333, 4444–4457 (2014)

    Article  Google Scholar 

  33. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  34. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.: Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int. J. Non-Linear Mech. 79, 48–65 (2016)

    Article  Google Scholar 

  35. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 50–71 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Y.-W., Hou, S., Xu, K.-F., Yang, T.-Z., Chen, L.-Q.: Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mech. Solida Sin. 30, 674–682 (2017)

    Article  Google Scholar 

  37. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230(4), 527–542 (2016)

    Article  Google Scholar 

  38. Bab, S., Khadem, S.E., Mahdiabadi, M.K., Shahgholi, M.: Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES). J. Vib. Control 23(6), 1001–1025 (2017)

    Article  MathSciNet  Google Scholar 

  39. Chen, J.E., He, W., Zhang, W., Yao, M.H., Sun, M.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91, 885–904 (2018)

    Article  Google Scholar 

  40. Zhang, Z., Ding, H., Zhang, Y.-W., Chen, L.-Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. 37, 387–401 (2021)

    Article  MathSciNet  Google Scholar 

  41. Li, H.Q., Touzé, C., Pelat, A., Gautier, F.: Combining nonlinear vibration absorbers and the acoustic black hole for passive broadband flexural vibration mitigation. Int. J. Non-Linear Mech. 129, 103558 (2021)

    Article  Google Scholar 

  42. Zhao, Y., Du, J., Chen, Y., Liu, Y.: Comparison study of the dynamic behavior of a generally restrained beam structure attached with two types of nonlinear vibration absorbers. J. Vib. Control 29(19–20), 4550–4565 (2022)

    MathSciNet  Google Scholar 

  43. Stojanović, V., Petković, M.D., Milić, D.: Nonlinear vibrations of a coupled beam-arch bridge system. J. Sound Vib. 464, 115000 (2020)

    Article  Google Scholar 

  44. Zhao, Y., Du, J.: Nonlinear vibration analysis of a generally restrained double-beam structure coupled via an elastic connector of cubic nonlinearity. Nonlinear Dyn. 109, 563–588 (2022)

    Article  Google Scholar 

  45. Zhao, Y., Du, J., Chen, Y., Liu, Y.: Nonlinear dynamic behavior analysis of an elastically restrained double-beam connected through a mass-spring system that is nonlinear. Nonlinear Dyn. 111, 8947–8971 (2023)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Fund of Natural Science Special (Special Post) Research Foundation of Guizhou University [Grant No. 2023-060].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhao Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Vibration governing equations of the DBS with a CNES can be obtained by putting Eqs. (A-1) to (A-3) into Eq. (11).

$$ \int_{{t_{1} }}^{{t_{2} }} {\delta T_{{{\text{System}}}} {\text{d}}t} = - \sum\limits_{i = 1}^{2} {\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{i} }} {\rho_{i} S_{i} \frac{{\partial^{2} w_{i} }}{{\partial t^{2} }}{\text{d}}x_{i} \delta w_{i} } } {\text{d}}t} - \int_{{t_{1} }}^{{t_{2} }} {m_{{\text{N}}} \frac{{{\text{d}}^{2} u_{{\text{N}}} }}{{{\text{d}}t^{2} }}\delta u_{{\text{N}}} {\text{d}}t} $$
(A-1)
$$ \begin{gathered} \int_{{t_{1} }}^{{t_{2} }} {\delta V_{{{\text{System}}}} {\text{d}}t} = \sum\limits_{i = 1}^{2} {\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{i} }} {E_{i} I_{i} } \frac{{\partial^{4} w_{i} }}{{\partial x_{i}^{4} }}\delta w_{i} {\text{d}}x_{i} {\text{d}}t} } \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} + \sum\limits_{i = 1}^{2} {\int_{{t_{1} }}^{{t_{2} }} {\left[ \begin{gathered} - E_{i} I_{i} \frac{{\partial^{2} w_{i} \left( {0,t} \right)}}{{\partial x_{i}^{2} }}\delta \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right) + E_{i} I_{i} \frac{{\partial^{3} w_{i} \left( {0,t} \right)}}{{\partial x_{i}^{3} }} \hfill \\ + E_{i} I_{i} \frac{{\partial^{2} w_{i} \left( {L_{i} ,t} \right)}}{{\partial x_{i}^{2} }}\delta \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right) - E_{i} I_{i} \frac{{\partial^{3} w_{i} \left( {L_{i} ,t} \right)}}{{\partial x_{i}^{3} }} \hfill \\ \end{gathered} \right]{\text{d}}t} } \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} + \sum\limits_{i = 1}^{2} {\int_{{t_{1} }}^{{t_{2} }} {\left[ \begin{gathered} k_{Li} w_{i} \left( {0,t} \right)\delta w_{i} + K_{Li} \frac{{\partial w_{i} \left( {0,t} \right)}}{{\partial x_{i} }}\delta \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right) \hfill \\ + k_{{{\text{R}}i}} w_{i} \left( {L_{i} ,t} \right)\delta w_{i} + K_{{{\text{R}}i}} \frac{{\partial w_{i} \left( {L_{1} ,t} \right)}}{{\partial x_{i} }}\delta \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right) \hfill \\ \end{gathered} \right]{\text{d}}t} } \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} + \sum\limits_{n = 1}^{4} {\int_{{t_{1} }}^{{t_{2} }} {k_{{\text{E}}} \left[ {w_{1} \left( {x_{1n} ,t} \right) - w_{2} \left( {x_{2n} ,t} \right)} \right]\delta \left( {w_{1} - w_{2} } \right){\text{d}}t} } \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} + \int_{{t_{1} }}^{{t_{2} }} {k_{{\text{N}}} \left[ {u_{{\text{N}}} - w_{1} \left( {x_{{{\text{1N}}}} ,t} \right)} \right]^{3} \delta w_{1} {\text{d}}t} + \int_{{t_{1} }}^{{t_{2} }} {k_{{\text{N}}} \left[ {u_{{\text{N}}} - w_{2} \left( {x_{{{\text{2N}}}} ,t} \right)} \right]^{3} } \delta w_{2} {\text{d}}t \hfill \\ \end{gathered} $$
(A-2)
$$ \begin{gathered} \int_{{t_{1} }}^{{t_{2} }} {\delta W_{{{\text{System}}}} {\text{d}}t} = \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{1} }} {G\left( {x_{1} - L_{1} } \right)F_{{0}} \sin \left( {\omega t} \right)\delta w_{1} } {\text{d}}x_{1} } {\text{d}}t - \sum\limits_{i = 1}^{2} {\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{i} }} {C_{i} \frac{{\partial w_{i} }}{\partial t}} {\text{d}}x_{i} \delta w_{i} {\text{d}}t} } \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} - \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{1} }} {C_{{\text{N}}} \left[ {\frac{{{\text{d}}u_{{\text{N}}} }}{{{\text{d}}t}} - G\left( {x_{1} - x_{{{\text{1N}}}} } \right)\frac{{\partial w_{1} }}{\partial t}} \right]\delta \left( {u_{{\text{N}}} - w_{1} } \right)} {\text{d}}x_{1} {\text{d}}t} \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} - \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{{L_{2} }} {C_{{\text{N}}} \left[ {\frac{{{\text{d}}u_{{\text{N}}} }}{{{\text{d}}t}} - G\left( {x_{2} - x_{{{\text{2N}}}} } \right)\frac{{\partial w_{2} }}{\partial t}} \right]\delta \left( {u_{{\text{N}}} - w_{2} } \right)} {\text{d}}x_{2} {\text{d}}t} \hfill \\ \end{gathered} $$
(A-3)

Appendix B

For HBM, the aimed equations and flexible displacements are the same as those of the GTM. The unknown time terms are set as,

$$ q_{1z} \left( t \right) = C_{{1{\text{z}}}} \sin \left( {\omega t} \right) + C_{{2{\text{z}}}} \cos \left( {\omega t} \right) + C_{{3{\text{z}}}} \sin \left( {3\omega t} \right) + C_{{4{\text{z}}}} \cos \left( {3\omega t} \right) $$
(B-1)
$$ q_{2m} \left( t \right) = D_{1m} \sin \left( {\omega t} \right) + D_{2m} \cos \left( {\omega t} \right) + D_{3m} \sin \left( {3\omega t} \right) + D_{4m} \cos \left( {3\omega t} \right) $$
(B-2)

and

$$ u_{{\text{N}}} \left( t \right) = X_{1} \sin \left( {\omega t} \right) + X_{2} \cos \left( {\omega t} \right) + X_{3} \sin \left( {3\omega t} \right) + X_{4} \cos \left( {3\omega t} \right) $$
(B-3)

where C1z, C2z, C3z, C4z, D1m, D2m, D3m, D4m, X1, X2, X3, and X4 are the unknown coefficients. Putting Eqs. (B-1), (B-2), (B-3) into Eq. (17), the equations related to the unknown coefficients are established. The unknown coefficients can be obtained by using the arc-length method to solve the corresponding equations. After obtaining the unknown coefficients, and putting them into Eq. (15), the vibration responses of DBS with a CNES can be obtained.

For LM, according to the energy expressions derived in Sect. 2.2, the Lagrange term of DBS with a CNES is derived as,

$$ L = T_{{{\text{System}}}} - V_{{{\text{System}}}} $$
(B-4)

The virtual external work (δWSystem) acting on the vibration system is derived as,

$$ \delta{W}_{{{\text{System}}}} = \delta{W}_{{\text{V}}} + \delta{W}_{{{\text{DBS}}}} + \delta{W}_{{{\text{CNES}}}} $$
(B-5)

Then, the flexible vibration displacements of DBS are reformed into the following forms

$$ w_{1} \left( {x_{1} ,t} \right) = {\mathbf{\varphi }}_{1} \cdot {\mathbf{q}}_{1} $$
(B-9)

and

$$ w_{2} \left( {x_{2} ,t} \right) = {\mathbf{\varphi }}_{2} \cdot {\mathbf{q}}_{2} $$
(B-7)

where each term is shown in Eqs. (B-6) and (B-7) are listed in the following,

$$ {\mathbf{\varphi }}_{1} = \left[ {\begin{array}{*{20}c} {\varphi_{11} } & {...} & {\varphi_{1z} } & {...} & {\varphi_{{{\text{1Z}}}} } \\ \end{array} } \right] $$
(B-8)
$$ {\mathbf{\varphi }}_{2} = \left[ {\begin{array}{*{20}c} {\varphi_{21} } & {...} & {\varphi_{2m} } & {...} & {\varphi_{{{\text{2M}}}} } \\ \end{array} } \right] $$
(B-9)
$$ {\mathbf{q}}_{1} = \left[ {\begin{array}{*{20}c} {q_{11} } & {...} & {q_{1z} } & {...} & {q_{{{\text{1Z}}}} } \\ \end{array} } \right]^{{\text{T}}} $$
(B-10)

and

$$ {\mathbf{q}}_{2} = \left[ {\begin{array}{*{20}c} {q_{21} } & {...} & {q_{2m} } & {...} & {q_{{{\text{2M}}}} } \\ \end{array} } \right]^{{\text{T}}} $$
(B-11)

To unified describe the displacement of the vibration system, the motion displacement of CNES is rewritten as,

$$ {\mathbf{q}}_{3} = \left[ {u_{{\text{N}}} } \right]^{{\text{T}}} $$
(B-12)

After substituting Eqs. (B-6) and (B-7) into Eqs. (B-4) and (B-5), using the next step, the Lagrange function of DBS with a CNES can be established.

$$ \frac{\partial }{\partial t}\left( {\frac{{\partial L_{{{\text{System}}}} }}{{\partial {\dot{\mathbf{q}}}_{i} }}} \right) - \frac{{\partial L_{{{\text{System}}}} }}{{\partial {\mathbf{q}}_{i} }} = {\mathbf{Q}}_{i} $$
(B-13)

where Qi is the generalized force column vector. By solving the corresponding Lagrange function, unknown time coefficients of displacements belonging to DBS with a CNES can be obtained. Putting the obtained time coefficients into Eq. (15), vibration responses of DBS with a CNES are obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Guo, F., Sun, Y. et al. Modeling and vibration analyzing of a double-beam system with a coupling nonlinear energy sink. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09551-6

Keywords

Navigation