Skip to main content
Log in

Order-supplementary finite-time trajectory tracking control of quadrotor unmanned aerial vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the finite-time position trajectory tracking control problem of quadrotor unmanned aerial vehicles (UAVs). Different from the standard inner–outer-loop control scheme, the proposed finite-time controller is constructed with an order-supplementary mechanism. Concretely, some virtual extended states with second-order dynamics are utilized in the controller design of the UAV’s position-loop subsystem, to replace the original feedback part of tracking errors. Then, the adding a power integrator technique is used in the establishment of the virtual state dynamics, such that the position loop of quadrotor UAVs achieves the trajectory tracking tasks in finite time. Meanwhile, the attitude command references are directly formulated from the virtual extended states. Moreover, to deal with disturbances or unknown velocities, some finite-time observers are further combined in the proposed approach to obtain the corresponding estimates of disturbances and velocities. Compared with the existing results, the proposed order-supplementary finite-time trajectory tracking approach can remove the use of filters in the attitude command resolution and realize strict finite-time convergence. The thrust control input for the position-loop subsystem can be adjusted more flexibly by setting the initial values of the introduced virtual states. In addition, the finite-time velocity observer provided in this paper takes aerodynamic damping into account and has more accurate estimation in practice. Some simulations are given to validate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Kyriakakis, A.N., Marinaki, M., Matsatsinis, N., Marinakis, Y.: Moving peak drone search problem: an online multi-swarm intelligence approach for UAV search operations. Swarm Evolut. Comput. 66, 100956 (2021)

    Article  Google Scholar 

  2. Zhou, Z., Zhang, C., Xu, C., Xiong, F., Zhang, Y., Umer, T.: Energy efficient industrial internet of UAVs for power line inspection in smart grid. IEEE Trans. Ind. Inform. 14(6), 2705–2714 (2018)

    Article  Google Scholar 

  3. Padró, J.-C., Muñoz, F.-J., Planas, J., Pons, X.: Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Observ. Geoinf. 75, 130–140 (2019)

    Google Scholar 

  4. de Moraes, R.S., de Freitas, E.P.: Multi-UAV based crowd monitoring system. IEEE Trans. Aerospace Electron. Syst. 56(2), 1332–1345 (2020)

    Article  Google Scholar 

  5. Chen, F., Wu, Q., Jiang, B., Tao, G.: A reconfiguration scheme for quadrotor helicopter via simple adaptive control and quantum logic. IEEE Trans. Ind. Electr. 62(7), 4328–4335 (2015)

    Article  Google Scholar 

  6. Lu, K., Xia, Y., Yu, C., Liu, H.: Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans. Autom. Sci. Eng. 13(1), 368–381 (2016)

    Article  Google Scholar 

  7. Wang, Z., Zhao, T.: Based on robust sliding mode and linear active disturbance rejection control for attitude of quadrotor load UAV. Nonlinear Dyn. 108(4), 3485–3503 (2022)

    Article  Google Scholar 

  8. Oliva-Palomo, F., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Izaguirre-Espinosa, C., Castillo, P.: A fractional nonlinear PI-structure control for robust attitude tracking of quadrotors. IEEE Trans. Aerosp. Electron. Syst. 55(6), 2911–2920 (2019)

    Article  Google Scholar 

  9. Wang, X., Yu, X., Li, S., Liu, J.: Composite block backstepping trajectory tracking control for disturbed unmanned helicopters. Aerospace Sci. Technol. 85, 386–398 (2019)

    Article  Google Scholar 

  10. Shao, S., Chen, M., Hou, J., Zhao, Q.: Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer. IEEE/ASME Trans. Mechatron. 26(2), 689–699 (2021)

    Article  Google Scholar 

  11. Lu, H., Liu, C., Guo, L., Chen, W.-H.: Constrained anti-disturbance control for a quadrotor based on differential flatness. Int. J. Syst. Sci. 48(6), 1182–1193 (2017)

    Article  MathSciNet  Google Scholar 

  12. Labbadi, M., Cherkaoui, M.: Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertainties. IEEE Trans. Aerospace Electr. Syst. 57(4), 2265–2277 (2021)

    Article  Google Scholar 

  13. Ghadiri, H., Emami, M., Khodadadi, H.: Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances. Aerospace Sci. Technol. 112, 106616 (2021)

    Article  Google Scholar 

  14. Rekabi, F., Shirazi, F.A., Sadigh, M.J., Saadat, M.: Nonlinear \(H_{\infty }\) measurement feedback control algorithm for quadrotor position tracking. J. Frankl. Inst. 357(11), 6777–6804 (2020)

    Article  MathSciNet  Google Scholar 

  15. Zhao, Z., Cao, D., Yang, J., Wang, H.: High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics. Nonlinear Dyn. 102(4), 2583–2596 (2020)

    Article  Google Scholar 

  16. Ríos, H., Falcón, R., González, O.A., Dzul, A.: Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans. Ind. Electr. 66(2), 1264–1272 (2019)

    Article  Google Scholar 

  17. Shirzadeh, M., Amirkhani, A., Jalali, A., Mosavi, M.R.: An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target. ISA Trans. 59, 290–302 (2015)

    Article  Google Scholar 

  18. Shen, Z., Li, F., Cao, X., Guo, C.: Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. Int. J. Control 94(11), 2945–2955 (2021)

    Article  MathSciNet  Google Scholar 

  19. Wang, X., Wang, G., Li, S.: Distributed finite-time optimization for integrator chain multiagent systems with disturbances. IEEE Trans. Autom. Control 65(12), 5296–5311 (2020)

    Article  MathSciNet  Google Scholar 

  20. Fu, M., Wang, T., Wang, C.: Fixed-time trajectory tracking control of a full state constrained marine surface vehicle with model uncertainties and external disturbances. Int. J. Control Autom. Syst. 17(6), 1331–1345 (2019)

    Article  Google Scholar 

  21. Liu, W., Zhao, J., Zhao, H., Ma, Q., Xu, S., Park, J.H.: Composite disturbances observer based finite-time fuzzy adaptive dynamic surface control of nonlinear systems with preassigned performance. IEEE Trans. Fuzzy Syst. 31(10), 3710–3720 (2023)

    Article  Google Scholar 

  22. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  23. Wu, D., Zhang, W., Du, H., Wang, X.: Robust adaptive finite-time trajectory tracking control of a quadrotor aircraft. Int. J. Robust Nonlinear Control 31(16), 8030–8054 (2021)

    Article  MathSciNet  Google Scholar 

  24. Liu, K., Wang, R., Zheng, S., Dong, S., Sun, G.: Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay. Nonlinear Dyn. 107(3), 2363–2390 (2022)

    Article  Google Scholar 

  25. Ouyang, Y., Xue, L., Dong, L., Sun, C.: Neural network-based finite-time distributed formation-containment control of two-layer quadrotor UAVs. IEEE Trans. Syst. Man Cybern. Syst. 52(8), 4836–4848 (2022)

    Article  Google Scholar 

  26. Du, H., Zhu, W., Wen, G., Wu, D.: Finite-time formation control for a group of quadrotor aircraft. Aerospace Sci. Technol. 69, 609–616 (2017)

    Article  Google Scholar 

  27. Singh, P., Gupta, S., Behera, L., Verma, N.K., Nahavandi, S.: Perching of nano-quadrotor using self-trigger finite-time second-order continuous control. IEEE Syst. J. 15(4), 4989–4999 (2021)

    Article  Google Scholar 

  28. Xu, Q., Wang, Z., Zhen, Z.: Adaptive neural network finite time control for quadrotor UAV with unknown input saturation. Nonlinear Dyn. 98(3), 1973–1998 (2019)

    Article  Google Scholar 

  29. Zhu, W., Du, H., Cheng, Y., Chu, Z.: Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn. 88(4), 2359–2369 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Bi, C., Wang, D., Kuang, Q., Wang, C.: Finite-time distributed event-triggered formation control for quadrotor UAVs with experimentation. ISA Trans. 126, 585–596 (2022)

    Article  Google Scholar 

  31. Tian, B., Lu, H., Zuo, Z., Zong, Q., Zhang, Y.: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. Int. J. Robust Nonlinear Control 28(1), 281–295 (2018)

    Article  MathSciNet  Google Scholar 

  32. Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

  33. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  Google Scholar 

  34. Bhat, S.P., Bernstein, D.S.: Finite-time stability of homogeneous systems. Proc. Am. Control Conf. 4, 2513–2514 (1997)

    Article  Google Scholar 

  35. Du, H., He, Y., Cheng, Y.: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I Reg. Papers 61(6), 1778–1788 (2014)

    Article  Google Scholar 

  36. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: Missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  Google Scholar 

  37. Cruz-Zavala, E., Moreno, J.A.: Levant’s arbitrary-order exact differentiator: a Lyapunov approach. IEEE Trans. Autom. Control 64(7), 3034–3039 (2019)

    Article  MathSciNet  Google Scholar 

  38. Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  39. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 62373099, 62025302, 62173221, the Key R & D Plan of Jiangsu Province under Grant BE2020082-4, the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant KYCX21_0107, and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Proof of Theorem 1

The proof on Theorem 1 contains two steps: the finite-time boundedness of \(e^{i}_{k}\) (\(k=1,\ldots ,4\), \(i\in \{x,y,z\}\)) in \(t\in [0,t_{\varPhi }]\) and the finite-time convergence of \(e^{i}_{k}\) after \(t=t_{\varPhi }\).

Step 1 (Finite-time boundedness of \(e^{i}_{k}\)): Select energy function \(V_{a}=\frac{1}{2}\sum _{i\in \{x,y,z\}}\sum _{k=1}^{4}(e_{k}^{i})^2\). Taking the derivative of \(V_{a}\) yields

$$\begin{aligned} \dot{V}_{a}=&\sum _{i\in \{x,y,z\}}\left[ \sum _{k=1}^{3}(e_{k}^{i}e_{k+1}^{i})+e_{4}^{i}u_{\delta }^{i}+e_{2}^{i}(H_{i}-H_{i}^{*})\right] . \end{aligned}$$
(32)

From Lemma 1, \(u_{\delta }^{i}\) satisfies \(u^{i}_{\delta }\le {l}_{4}\left\{ |e_{4}^{i}|^{\frac{1}{\beta _{4}}} +l_{3}^{\frac{1}{\beta _{4}}}\right. \)\(\left. \left| (e_{3}^{i})^{\frac{1}{\beta _{3}}}+l_{2}^{\frac{1}{\beta _{3}}}\left[ (e_{2}^{i})^{\frac{1}{\beta _{2}}}+l_{1}^{\frac{1}{\beta _{2}}}e_{1}^{i}\right] \right| \right\} ^{\beta _{5}}\le {l}_{4}|e_{4}^{i}|^{\frac{\beta _{5}}{\beta _{4}}}+l_{4}l_{3}^{\frac{\beta _{5}}{\beta _{4}}}\left| (e_{3}^{i})^{\frac{1}{\beta _{3}}}+l_{2}^{\frac{1}{\beta _{3}}}\left[ (e_{2}^{i})^{\frac{1}{\beta _{2}}}+l_{1}^{\frac{1}{\beta _{2}}}e_{1}^{i}\right] \right| ^{\beta _{5}}\le {l}_{4}|e_{4}^{i}|^{\frac{\beta _{5}}{\beta _{4}}}+l_{4}l_{3}^{\frac{\beta _{5}}{\beta _{4}}}\left| e_{3}^{i}\right| ^{\frac{\beta _{5}}{\beta _{3}}}+l_{4}l_{3}^{\frac{\beta _{5}}{\beta _{4}}}l_{2}^{\frac{\beta _{5}}{\beta _{3}}}\left| e_{2}^{i}\right| ^{\frac{\beta _{5}}{\beta _{2}}}+l_{4}l_{3}^{\frac{\beta _{5}}{\beta _{4}}}l_{2}^{\frac{\beta _{5}}{\beta _{3}}}l_{1}^{\frac{\beta _{5}}{\beta _{2}}}\left| e_{1}^{i}\right| ^{\beta _{5}}\). Since \(\beta _{5}\), \(\frac{\beta _{5}}{\beta _{4}}\), \(\frac{\beta _{5}}{\beta _{3}}\), \(\frac{\beta _{5}}{\beta _{2}}<1\), combining inequality \(|x|^{\alpha }\le 1+|x|\) (\(0<\alpha <1\)), it holds that

$$\begin{aligned} e_{4}^{i}u_{\delta }^{i}\le&~{h}_{i}\sum _{k=1}^{4}(e_{k}^{i})^2+\kappa _{i}, \end{aligned}$$
(33)

where \(h_{i}\) and \(\kappa _{i}\) for \(i\in \{x,y,z\}\) are certain constants.

For \(e_{2}^{i}(H_{i}-H_{i}^{*})\), since \(T>0\), there are \(H_{i}-H_{i}^{*}\le \frac{4}{m}T\) for \(i\in \{x,y,z\}\). Given that \(\dot{r}_{i}\) and \(\ddot{r}_{i}\) are bounded in any finite time, combining the forms of T and controller (11) with \(f_{i}=-\frac{K_{i}}{m}(e_{2}^{i}+\dot{r}_{i})\) for \(i\in \{x,y,z\}\), it always holds that

$$\begin{aligned} \sum _{i\in \{x,y,z\}}\big [e_{2}^{i}(H_{i}-H_{i}^{*})\big ]\le&~{h}_{0}\sum _{i\in \{x,y,z\}}\sum _{k=2}^{3}(e_{k}^{i})^2+\kappa _{0}, \end{aligned}$$
(34)

where \(h_{0}\) and \(\kappa _{0}\) are certain constants. Plugging (33) and (34) into (32) yields

$$\begin{aligned} \dot{V}_{a}\le&~{\bar{h}}\sum _{i\in \{x,y,z\}}\sum _{k=1}^{4}(e_{k}^{i})^{2}+\bar{\kappa }\le 2\bar{h}V_{a}+\bar{\kappa }, \end{aligned}$$
(35)

where \(\bar{h}\) and \(\bar{\kappa }\) are certain constants. This implies that \(e_{k}^{i}\) for \(i\in \{x,y,z\}\), \(k=1,\ldots ,4\), are bounded in \(t\le {t}_{\varPhi }\).

Step 2 (Finite-time convergence of \(e^{i}_{k}\)): After \(t=t_{\varPhi }\), \(H_{i}-H_{i}^{*}=0\) for \(i\in \{x,y,z\}\). Then system (13) can be reduced into

$$\begin{aligned} \dot{e}_{1}^{i}=e_{2}^{i},\dot{e}_{2}^{i}=e_{3}^{i},\dot{e}_{3}^{i}=e_{4}^{i},\dot{e}_{4}^{i}=u^{i}_{\delta }. \end{aligned}$$
(36)

Define \(\xi _{1}^{i}=e_{1}^{i}\). Consider a Lyapunov function \(V_{1}^{i}=\frac{1}{2}(\xi _{1}^{i})^{2}\). Then taking the derivative of \(V_{1}^{i}\) yields

$$\begin{aligned} \dot{V}_{1}^{i}=&~\xi _{1}^{i}e_{2}^{i}=\xi _{1}^{i}(e_{2}^{i})=\xi _{1}^{i}[e_{2}^{i}-(e_{2}^{i})^{*}]+\xi _{1}^{i}(e_{2}^{i})^{*}. \end{aligned}$$
(37)

Design \((e_{2}^{i})^{*}=-l_{1}(\xi _{1}^{i})^{\beta _{2}}\). Then \(\dot{V}_{1}^{i}=\xi _{1}^{i}[e_{2}^{i}-(e_{2}^{i})^{*}]-l_{1}(\xi _{1}^{i})^{1+\beta _{2}}\). Let \(\xi _{2}^{i}=(e_{2}^{i})^{1/\beta _{2}}-[(e_{2}^{i})^{*}]^{1/\beta _{2}}\). Choose \(V_{2}^{i}=V_{1}^{i}+W_{2}^{i}\), where \(W_{2}^{i}=\int _{(e_{2}^{i})^{*}}^{e_{2}^{i}}\left\{ s^{1/\beta _{2}}-\right. \)\(\left. [(e_{2}^{i})^{*}]^{1/\beta _{2}}\right\} ^{2-\beta _{2}}\textrm{d}s\). Then there is

$$\begin{aligned} \dot{V}_{2}^{i}=&~\dot{V}_{1}^{i}+(\xi _{2}^{i})^{2-\beta _{2}}e_{3}^{i}\nonumber \\&+(2-\beta _{2})\frac{\textrm{d}\left\{ -[(e_{2}^{i})^{*}]^{\frac{1}{\beta _{2}}}\right\} }{\textrm{d}t}Q_{2}^{i}, \end{aligned}$$
(38)

where \(Q_{2}^{i}=\int _{(e_{2}^{i})^{*}}^{e_{2}^{i}}\left\{ s^{1/\beta _{2}}-[(e_{2}^{i})^{*}]^{1/\beta _{2}}\right\} ^{1-\beta _{2}}\textrm{d}s\le |\xi _{2}^{i}|^{1-\beta _{2}}|e_{2}^{i}-(e_{2}^{i})^{*}|\le 2^{1-\beta _{2}}|\xi _{2}^{i}|\). From Lemma 2, combining \(|\textrm{d}\left\{ -[(e_{2}^{i})^{*}]^{1/\beta _{2}}\right\} /\textrm{d}t|\le {l}_{1}^{1/\beta _{2}}|e_{2}^{i}|\le {l}_{1}^{1/\beta _{2}}\left[ |e_{2}^{i}-(e_{2}^{i})^{*}|+|(e_{2}^{i})^{*}|\right] \le {l}_{1}^{1/\beta _{2}}\left( 2^{1-\beta _{2}}|\xi _{2}^{i}|^{\beta _{2}}\right. \)\(\left. +l_{1}|\xi _{1}^{i}|^{\beta _{2}}\right) \), it holds that \((2-\beta _{2})\left( \textrm{d}\left\{ -[(e_{2}^{i})^{*}]^{1/\beta _{2}}\right\} /\textrm{d}t\right) Q^{i}_{2}\le (2-\beta _{2})2^{1-\beta _{2}}{l}_{1}^{1/\beta _{2}}\left( 2^{1-\beta _{2}}|\xi _{2}^{i}|^{\beta _{2}}+l_{1}|\xi _{1}^{i}|^{\beta _{2}}\right) |\xi _{2}^{i}|\le \frac{l_{1}}{8}(\xi _{1}^{i})^{1+\beta _{2}}+\alpha _{2}(\xi _{2}^{i})^{1+\beta _{2}}\), where \(\alpha _{2}\) is a certain positive constant. Moreover, \(\xi _{1}^{i}[e_{2}^{i}-(e_{2}^{i})^{*}]\le |\xi _{1}^{i}||e_{2}^{i}-(e_{2}^{i})^{*}|\le 2^{1-\beta _{2}}|\xi _{2}^{i}|^{\beta _{2}}|\xi _{1}^{i}|\le \frac{l_{1}}{8}(\xi _{1}^{i})^{1+\beta _{2}}+\bar{\alpha }_{2}(\xi _{2}^{i})^{1+\beta _{2}}\), where \(\bar{\alpha }_{2}\) is also a certain positive constant. Then, there is

$$\begin{aligned} \dot{V}_{2}^{i}\le&-\frac{3l_{1}}{4}(\xi _{1}^{i})^{1+\beta _{2}}+(\bar{\alpha }_{2}+\alpha _{2})(\xi _{2}^{i})^{1+\beta _{2}}\nonumber \\&+(\xi _{2}^{i})^{2-\beta _{2}}e_{3}^{i}. \end{aligned}$$
(39)

Let \((e_{3}^{i})^{*}=-l_{2}(\xi _{2}^{i})^{\beta _{3}}\), \(l_{2}\ge \alpha _{2}+\bar{\alpha }_{2}+\frac{3}{4}l_{1}\). Then

$$\begin{aligned} \dot{V}_{2}^{i}\le&-\frac{3l_{1}}{4}\sum _{k=1}^{2}(\xi _{k}^{i})^{1+\beta _{2}}+(\xi _{2}^{i})^{2-\beta _{2}}[e_{3}^{i}-(e_{3}^{i})^{*}]. \end{aligned}$$
(40)

Define \(\xi _{3}^{i}=(e_{3}^{i})^{1/\beta _{3}}-[(e_{3}^{i})^{*}]^{1/\beta _{3}}\). Consider \(V_{3}^{i}=V_{2}^{i}+W_{3}^{i}\) where \(W_{3}^{i}{=}\int _{(e_{3}^{i})^{*}}^{e_{3}^{i}}\left\{ s^{1/\beta _{3}}{-}[(e_{3}^{i})^{*}]^{1/\beta _{3}}\right\} ^{2-\beta _{3}}\textrm{d}s\). Similar to \(V_{2}^{i}\), it holds that

$$\begin{aligned} \dot{V}_{3}^{i}=&~\dot{V}_{2}^{i}{+}(\xi _{3}^{i})^{2-\beta _{3}}e_{4}^{i}{+}(2-\beta _{3})\frac{\textrm{d}\left\{ -[(e_{3}^{i})^{*}]^{\frac{1}{\beta _{3}}}\right\} }{\textrm{d}t}Q_{3}^{i}, \end{aligned}$$
(41)

where \(Q_{3}^{i}=\int _{(e_{3}^{i})^{*}}^{e_{3}^{i}}\left\{ s^{1/\beta _{3}}-[(e_{3}^{i})^{*}]^{1/\beta _{3}}\right\} ^{1-\beta _{3}}\textrm{d}s\le {2}^{1-\beta _{3}}|\xi _{3}^{i}|\). Note that \(|\textrm{d}\left\{ -[(e_{3}^{i})^{*}]^{1/\beta _{3}}\right\} /\textrm{d}t|=l_{2}^{1/\beta _{3}}|\dot{\xi }_{2}^{i}|\), \(|\dot{\xi }_{2}^{i}|=|\frac{1}{\beta _{2}}(e_{2}^{i})^{1/\beta _{2}-1}e_{3}^{i}|+|\textrm{d}\left\{ -[(e_{2}^{i})^{*}]^{1/\beta _{2}}\right\} /\textrm{d}t|\), \(|(e_{2}^{i})^{1/\beta _{2}-1}e_{3}^{i}|=|(e_{2}^{i})^{1/\beta _{2}}|^{1-\beta _{2}}|(e_{3}^{i})^{1/\beta _{3}}|^{\beta _{3}}\le \frac{1-\beta _{2}}{1+\varepsilon }|e_{2}^{i}|+\frac{\beta _{3}}{1+\varepsilon }|e_{3}^{i}|^{\beta _{2}/\beta _{3}}\). Since \(|e_{2}^{i}|=|\xi _{2}^{i}+[(e_{2}^{i})^{*}]^{1/\beta _{2}}|^{\beta _{2}}\) and \(|e_{3}^{i}|=|\xi _{3}^{i}+[(e_{3}^{i})^{*}]^{1/\beta _{3}}|^{\beta _{3}}\), there must exist a positive constant \(\mu _{3}\) such that \(\textrm{d}\left\{ -[(e_{3}^{i})^{*}]^{1/\beta _{3}}\right\} /\textrm{d}t\le {\mu }_{3}\sum _{k=1}^{3}|\xi _{k}^{i}|^{\beta _{2}}\). Based on Lemma 2, it holds that \((2-\beta _{3})|\textrm{d}\left\{ -[(e_{3}^{i})^{*}]^{1/\beta _{3}}\right\} /\textrm{d}t||Q_{3}^{i}|\le \frac{l_{1}}{8}\sum _{k=1}^{2}(\xi _{k}^{i})^{1+\beta _{2}}+\alpha _{3}(\xi _{3}^{i})^{1+\beta _{2}}\) where \(\alpha _{3}\) is a certain positive constant. Moreover, \((\xi _{2}^{i})^{2-\beta _{2}}[e_{3}^{i}-(e_{3}^{i})^{*}]\le \frac{l_{1}}{8}(\xi _{2}^{i})^{1+\beta _{2}}+\bar{\alpha }_{3}(\xi _{3}^{i})^{1+\beta _{2}}\) where \(\bar{\alpha }_{3}\) is a certain positive constant. Thus,

$$\begin{aligned} \dot{V}_{3}^{i}\le&-\frac{l_{1}}{2}\sum _{k=1}^{2}(\xi _{k}^{i})^{1+\beta _{2}}+(\alpha _{3}+\bar{\alpha }_{3})(\xi _{3}^{i})^{1+\beta _{2}}\nonumber \\&+(\xi _{3}^{i})^{2-\beta _{3}}e_{4}^{i}. \end{aligned}$$
(42)

Let \((e_{4}^{i})^{*}=-l_{3}(\xi _{3}^{i})^{\beta _{4}}\), \(l_{3}\ge \alpha _{3}+\bar{\alpha }_{3}+\frac{1}{2}l_{1}\), \(\xi _{4}^{i}=(e_{4}^{i})^{1/\beta _{4}}-[(e_{4}^{i})^{*}]^{1/\beta _{4}}\), and consider \(V_{4}^{i}=V_{3}^{i}+W_{4}^{i}\), where \(W_{4}^{i}=\int _{(e_{4}^{i})^{*}}^{e_{4}^{i}}\left\{ s^{1/\beta _{4}}-[(e_{4}^{i})^{*}]^{1/\beta _{4}}\right\} ^{2-\beta _{4}}\textrm{d}s\). Then, similar to \(V_{3}\), there must exist \(\alpha _{4}\), \(\bar{\alpha }_{4}\) such that

$$\begin{aligned} \dot{V}_{4}^{i}\le&-\frac{l_{1}}{4}\sum _{k=1}^{3}(\xi _{k}^{i})^{1+\beta _{2}}+(\alpha _{4}+\bar{\alpha }_{4})(\xi _{4}^{i})^{1+\beta _{2}}\nonumber \\&+(\xi _{4}^{i})^{2-\beta _{4}}u_{\delta }^{i}. \end{aligned}$$
(43)

Set \(l_{4}\ge \alpha _{4}+\bar{\alpha }_{4}+\frac{1}{4}l_{1}\). Then plugging the controller (14) yields

$$\begin{aligned} \dot{V}_{4}^{i}\le&-\frac{l_{1}}{4}\sum _{k=1}^{4}(\xi _{k}^{i})^{1+\beta _{2}}. \end{aligned}$$
(44)

Moreover, it gives that for \(V_{4}=\frac{1}{2}(\xi _{1}^{i})^{2}+\sum _{k=2}^{4}\int _{(e_{k}^{i})^{*}}^{e_{k}^{i}}\left\{ s^{1/\beta _{k}}-[(e_{k}^{i})^{*}]^{1/\beta _{k}}\right\} ^{2-\beta _{k}}\textrm{d}s\le \frac{1}{2}(\xi _{1}^{i})^{2}+\sum _{k=2}^{4}2^{2-\beta _{k}}(\xi _{k}^{i})^{2}\). Then there is a positive constant \(\mu \) such that \(V_{4}\le \mu \sum _{k=1}^{4}(\xi _{k}^{i})^{2}\). Then there is

$$\begin{aligned} \dot{V}_{4}^{i}+\frac{l_{1}}{4}\mu ^{-\frac{1+\beta _{2}}{2}}(V_{4}^{i})^{\frac{1+\beta _{2}}{2}}\le&~0. \end{aligned}$$
(45)

Therefore, based on Lemma 3 of [19], \(V_{4}^{i}\) converges to zero in finite time, which completes the proof. \(\square \)

Proof of Theorem 2

For finite-time disturbance observer (18), there is a time \(t_{d}\) such that after \(t=t_{d}\), the disturbance estimate error \(d_{i}-\varsigma ^{i}_{2}=0\). After \(t=t_{d}\), the finite-time convergence of \(e_{k}^{i}\) (\(k=1,\ldots ,4\) and \(i\in \{x,y,z\}\)) can be obtained directly from Appendix A. Therefore, the proof on Theorem 2 focuses on the finite-time boundedness of \(e^{i}_{k}\) before \(t\le {t_{d}}\).

Still consider \(V_{a}\). Then \(\dot{V}_{a}=\sum _{i\in \{x,y,z\}}\left[ \sum _{k=1}^{3}\right. \)\(\left. (e_{k}^{i}e_{k+1}^{i})+e_{4}^{i}u_{\delta }^{i}\right] +\sum _{i\in \{x,y,z\}}\left[ e_{2}^{i}(H_{i}-H_{i}^{*})\right] +\sum _{i\in \{x,y,z\}}\left[ e_{2}^{i}(d_{i}-\varsigma _{2}^{i})\right] \). For \(e_{2}^{i}(d_{i}-\varsigma _{2}^{i})\), since there is a positive constant \(E_d\) satisfying \(|d_i-\varsigma ^i_2|<E_d\), it holds that \(e^i_2(d_i-\varsigma ^i_2)\le \frac{1}{2}\left( e_{2}^{i}\right) ^{2}+\frac{1}{2}E_{d}^{2}\). According to Appendix A, there is

$$\begin{aligned} \dot{V}_{a}\le&~{\bar{h}_{b}}\sum _{i\in \{x,y,z\}}\sum _{k=1}^{4}(e_{k}^{i})^{2}+\kappa _{b}=2{\bar{h}_{b}}V_{a}+\kappa _{b}, \end{aligned}$$
(46)

which implies that in \(t\in [0,t_{d}]\), \(e_{k}^{i}\), \(k=1,\dots ,4\) are all bounded. This completes the proof. \(\square \)

Proof of Theorem 3

Denoting the estimate errors as \(e_{1}^{b}=\eta _{1}^{i}-p_{i}\) and \(e_{2}^{b}=\eta _{2}^{i}-\dot{p}_{i}\), the error dynamic system of observer (23) is written as

$$\begin{aligned} \dot{e}_{1}^{b}=e_{2}^{b}-\lambda _{1}^{v}\textrm{sig}^{\gamma _{1}}(e_{1}^{b}), \dot{e}_{2}^{b}=-\lambda _{2}^{v}\textrm{sig}^{\gamma _{2}}(e_{1}^{b})-\frac{K_{i}}{m}e_{2}^{b}. \end{aligned}$$
(47)

According to Lemma 3, the proof of Theorem 3 is divided into two steps, i.e., globally asymptotic stability of system (47) and globally finite-time stability of system (47).

Step 1 (Globally asymptotic stability of system (47)): Choose Lyapunov function \(V_{i}^{c}=\frac{2\lambda _{2}^{v}}{1+\gamma _{2}}|e_{1}^{b}|^{1+\gamma _{2}}+(e_{2}^{b})^{2}\). Then, taking \(\dot{V}_{i}^{c}\) along system (47) yields

$$\begin{aligned} \dot{V}_{i}^{c}=&~2\lambda _{2}^{v}\textrm{sig}^{\gamma _{2}}(e_{1}^{b})e_{2}^{b}-2\lambda _{1}^{v}\lambda _{2}^{v}|e_{1}^{b}|^{\gamma _{1}+\gamma _{2}}\nonumber \\&-2\lambda ^{v}_{2}e_{2}^{b}\textrm{sig}^{\gamma _{2}}(e_{1}^{b})-2\frac{K_{i}}{m}(e^{b}_{2})^{2}\nonumber \\ =&-2\lambda _{1}^{v}\lambda _{2}^{v}|e_{1}^{b}|^{\gamma _{1}+\gamma _{2}}-2\frac{K_{i}}{m}(e^{b}_{2})^{2}. \end{aligned}$$
(48)

Therefore, \(e_{1}^{b}\) and \(e_{2}^{b}\) converge to zeros asymptotically.

Step 2 (Globally finite-time stability of system (47)): Consider system

$$\begin{aligned} \dot{e}_{1}^{b}=e_{2}^{b}-\lambda _{1}^{v}\textrm{sig}^{\gamma _{1}}(e_{1}^{b}), \dot{e}_{2}^{b}=-\lambda _{2}^{v}\textrm{sig}^{\gamma _{2}}(e_{1}^{b}). \end{aligned}$$
(49)

By [39], it can be obtained that (49) is asymptotically stable and homogeneous of degree \(k=\gamma _{1}-1\) with respect to the dilation \((\tau ^{b}_{1},\tau _{2}^{b})=(1,\gamma _{1})\). Then, for any \([e_{1}^{b}, e_{2}^{b}]^\textrm{T}\ne \textbf{0}_{2}\), there is \(\lim _{\varepsilon \rightarrow {0}}\frac{-\frac{K_{1}}{m}\varepsilon ^{\tau _{2}^{b}}e_{2}^{b}}{\varepsilon ^{\tau _{2}^{b}+k}}=0\). Hence, according to Lemma 3, it can be concluded that system (47) is globally finite-time stable. This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, X., Li, S. et al. Order-supplementary finite-time trajectory tracking control of quadrotor unmanned aerial vehicles. Nonlinear Dyn 112, 8229–8247 (2024). https://doi.org/10.1007/s11071-024-09504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09504-z

Keywords

Navigation