Skip to main content
Log in

Interactions of cross-diffusion and nonlocal delay induce spatial vegetation patterning in semi-arid environments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In semi-arid regions, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the process of water absorption by vegetation roots, and vegetation can also absorb water through the nonlocal interaction of roots. So in this paper, we consider how the interactions of cross-diffusion and nonlocal delay affect the growth of vegetation. By mathematical analysis, the conditions under which Turing patterns occur are obtained for this vegetation-water model. At the same time, we obtain the amplitude equation near the Turing bifurcation boundary by using the multi-scale analysis method. Conditions for the emergence of Turing patterns such as stripes, spots, and mixtures of stripes and spots are identified through the stability analysis of amplitude equation. Some numerical simulations are given to illustrate the analytical results, especially the evolution processes of vegetation patterns depicted under different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Rietkerk, M., Dekker, S.C., De Ruiter, P.C., et al.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692), 1926–1929 (2004)

    Article  Google Scholar 

  2. Scheffer, M., Bascompte, J., Brock, W.A., et al.: Early-warning signals for critical transitions. Nature 461(7260), 53 (2009)

    Article  Google Scholar 

  3. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284(5421), 1826–1828 (1999)

    Article  Google Scholar 

  4. Hardenberg, J.V., Meron, E., Shachak, M., et al.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001)

    Article  Google Scholar 

  5. Xue, Q., Liu, C., Li, L., et al.: Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments. Appl. Math. Comput. 399, 126038 (2021)

    MathSciNet  Google Scholar 

  6. Xu, S., Zhang, C.R.: Spatiotemporal patterns induced by cross-diffusion on vegetation model. AIMS Math. 7(8), 14076–14098 (2022)

    Article  MathSciNet  Google Scholar 

  7. Escaff, D., Fernandez-Oto, C., Clerc, M.G., et al.: Localized vegetation patterns, fairy circles, and localized patches in arid landscapes. Phys. Rev. E 91, 022924 (2015)

    Article  Google Scholar 

  8. Alfaro, M., Izuhara, H., Mimura, M.: On a nonlocal system for vegetation in drylands. J. Math. Biol. 77, 1761–1793 (2018)

    Article  MathSciNet  Google Scholar 

  9. Eigentler, L., Sherratt, J.A.: Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal. J. Math. Biol. 77, 739–763 (2018)

    Article  MathSciNet  Google Scholar 

  10. Maimaiti, Y., Yang, W.B., Wu, J.H.: Turing instability and coexistence in an extended Klausmeier model with nonlocal grazing. Nonlinear Anal. Real World Appl. 64, 103443 (2022)

    Article  MathSciNet  Google Scholar 

  11. Jiang, D.H., Lam, K.Y., Lou, Y., et al.: Monotonicity and global dynamics of a nonlocal two-species phytoplankton model. SIAM J. Appl. Math. 79(2), 716–742 (2019)

    Article  MathSciNet  Google Scholar 

  12. Geng, D.X., Jiang, W.H., Lou, Y., et al.: Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition. Stud. Appl. Math. 148(1), 396–432 (2022)

    Article  MathSciNet  Google Scholar 

  13. Liao, K.L., Lou, Y.: The effect of time delay in a two-patch model with random dispersal. Bull. Math. Biol. 76(2), 335–376 (2014)

    Article  MathSciNet  Google Scholar 

  14. Shi, J.P., Wang, C.C., Wang, H.: Diffusive spatial movement with memory and maturation delays. Nonlinearity 32(9), 3188 (2019)

    Article  MathSciNet  Google Scholar 

  15. Song, Y.L., Shi, Q.Y.: Stability and bifurcation analysis in a diffusive predator-prey model with delay and spatial average. Math. Methods Appl. Sci. 46(5), 5561–5584 (2023)

    Article  MathSciNet  Google Scholar 

  16. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theor. Biol. 136(1), 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  17. Xue, Q., Sun, G.Q., Liu, C., et al.: Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment. Nonlinear Dyn. 99(4), 3407–3420 (2020)

    Article  Google Scholar 

  18. Liu, C., Wang, F.G., Xue, Q., et al.: Pattern formation of a spatial vegetation system with root hydrotropism. Appl. Math. Comput. 420, 126913 (2022)

    MathSciNet  Google Scholar 

  19. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  20. Chen, M.X., Wu, R.C., Chen, L.P.: Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system. Appl. Math. Comput. 380, 125300 (2020)

    MathSciNet  Google Scholar 

  21. Zhao, H.Y., Huang, X.X., Zhang, X.B.: Turing instability and pattern formation of neural networks with reaction-diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)

    Article  MathSciNet  Google Scholar 

  22. Song, Y.L., Yang, R., Sun, G.Q.: Pattern dynamics in a Gierer-Meinhardt model with a saturating term. Appl. Math. Model. 46, 476–491 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sun, G.Q., Wang, C.H., Chang, L.L., et al.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  Google Scholar 

  24. Consolo, G., Curró, C., Valenti, G.: Turing vegetation patterns in a generalized hyperbolic Klausmeier model. Math. Methods Appl. Sci. 43(18), 10474–10489 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhang, F.F., Li, Y.X., Zhao, Y.L., et al.: Vegetation pattern formation and transition caused by cross-diffusion in a modified vegetation-sand model. Int. J. Bifurc. Chaos 32(05), 2250069 (2022)

    Article  MathSciNet  Google Scholar 

  26. Wang, X.L., Wang, W.D., Zhang, G.H.: Vegetation pattern formation of a water-biomass model. Commun. Nonlinear Sci. Numer. Simul. 42, 571–584 (2017)

  27. Jia, Y.F.: Computational analysis on Hopf bifurcation and stability for a consumer-resource model with nonlinear functional response. Nonlinear Dyn. 94(1), 185–195 (2018)

    Article  Google Scholar 

  28. Wang, W.M., Gao, X.Y., Cai, Y.L., et al.: Turing patterns in a diffusive epidemic model with saturated infection force. J. Frank. Inst. 355(15), 7226–7245 (2018)

    Article  MathSciNet  Google Scholar 

  29. Fu, S.M., Zhang, H.S.: Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model. Commun. Nonlinear Sci. Numer. Simul. 99, 105807 (2021)

  30. Guo, G.H., Wang, J.J.: Pattern formation and qualitative analysis for a vegetation-water model with diffusion. Nonlinear Anal. Real World Appl. 76, 104008 (2024)

    Article  MathSciNet  Google Scholar 

  31. Guo, G.H., Qin, Q.J., Pang, D.F., et al.: Positive steady-state solutions for a vegetation-water model with saturated water absorption. Commun. Nonlinear Sci. Numer. Simul. 131, 107802 (2024)

    Article  MathSciNet  Google Scholar 

  32. Guo, G.H., Zhao, S.H., Wang, J.J., et al.: Positive steady-state solutions for a water-vegetation model with the infiltration feedback effect. Discrete Cont. Dyn-B 29(1), 426–458 (2024)

    Article  MathSciNet  Google Scholar 

  33. Guo, G.H., Niu, A.N., Cao, Q., et al.: Some qualitative analyses on a vegetation-water model with cross-diffusion and internal competition. Int. J. Biomath. 2350109 (2024)

  34. Guo, G.H., Qin, Q.J., Cao, H., et al.: Pattern formation of a spatial vegetation system with cross-diffusion and nonlocal delay. Chaos Soliton. Fract. 181, 114622 (2024)

    Article  MathSciNet  Google Scholar 

  35. Guo, G.H., Zhao, S.H., Pang, D.F., et al.: Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration feedback effect. Z. Angew. Math. Phys. 75(2), 33 (2024)

    Article  MathSciNet  Google Scholar 

  36. Gourley, S.A., So, J.W.H.: Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44(1), 49–78 (2002)

    Article  MathSciNet  Google Scholar 

  37. Sun, G.Q., Wang, C.H., Wu, Z.Y.: Pattern dynamics of a Gierer-Meinhardt model with spatial effects. Nonlinear Dyn. 88(2), 1385–1396 (2017)

    Article  Google Scholar 

  38. Ouyang, Q., Gunaratne, G.H., Swinney, H.L.: Rhombic patterns: broken hexagonal symmetry. Chaos Interdis. J. Nonlinear Sci. 3(4), 707–711 (1993)

    Article  Google Scholar 

  39. Dutt, A.K.: Amplitude equation for a diffusion-reaction system: the reversible Sel’kov model. AIP Adv. 2(4), 042125 (2012)

    Article  Google Scholar 

  40. Han, B.S., Wang, Z.C.: Turing patterns of a Lotka-Volterra competitive system with nonlocal delay. Int. J. Bifurc. Chaos 28(07), 1830021 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (61872227, 12126420, 52276028), Postdoctoral Science Foundation of China (Grant No. 2022M711854), and Shuimu Tsinghua Scholar Program (Grant No. 2021SM062).

Author information

Authors and Affiliations

Authors

Contributions

GG and JW contributed to the conception of the study and wrote the main manuscript text. SZ and CZ prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gaihui Guo.

Ethics declarations

Conflict of interest

The authors declare that the work is our original research, which has not been fully or partially published before. There is no Conflict of interest in submitting this manuscript, and we have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Wang, J., Zhao, S. et al. Interactions of cross-diffusion and nonlocal delay induce spatial vegetation patterning in semi-arid environments. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09460-8

Keywords

Mathematics Subject Classification

Navigation