Skip to main content
Log in

Palm petiole inspired nonlinear anti-vibration ring with deformable crescent-shaped cross-section

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel nonlinear anti-vibration ring with deformable crescent-shaped cross-sections (NAVR-DCCS) inspired by the petiole of palm leaf. The proposed NAVR-DCCS exhibits markedly enhanced nonlinear quasi-zero stiffness through deformable cross-sections, which endow it with advantageous vibration isolation attributes. A comprehensive investigation of the structural nonlinearities and dynamic behaviors of the NAVR-DCCS is undertaken, with emphasis on the principle of cross-sectional deformation and its nonlinear stiffness properties. This study explores the influence of pertinent parameters on the nonlinear characteristics and displacement transmissibility. Tensile-compression testing and transmissibility measurements are conducted to verify theoretical calculations, and the experimental results are found to be in congruity with theoretical predictions. The beneficial nonlinear characteristics of the NAVR-DCCS hold promise for providing a passive vibration isolation methodology, representing a potentially innovative solution with broad-reaching applicability and utility across diverse research domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\(A\) :

Amplitude of maximum acceleration (m/s2)

\(b\) :

Zeroth harmonic term (mm)

\(c\) :

Damping coefficient (Ns/m)

deg:

Degrees (−)

\(E\) :

Young’s modulus (MPa)

Eq:

Equivalent (−)

\(f_{k}\) :

Geometrically nonlinear elastic force (N)

Fig.:

Figure (−)

FDM:

Fused deposition modeling (−)

\(g\) :

Acceleration of gravity (m/s2)

\(H\) :

Thickness of the crescent-shaped cross section (mm)

Hz:

Hertz (−)

HB:

Harmonic balance (−)

HBM:

Harmonic balance method (−)

HSLDS:

High-static-low-dynamic-stiffness (−)

\(H(\omega )\) :

The transmissibility from the base to the platform (−)

\(k_{1}\) :

Stiffness coefficient of ring (N/m)

\(k_{2}\) :

Stiffness coefficient of ring (N/m3)

\(l\) :

The distance between the centers of the inner and outer arcs of a crescent-shaped cross section (mm)

\(L\) :

Lagrangian (−)

\(m\) :

Payload mass (kg)

mm:

Millimeter (−)

\(N\) :

Newton (−)

NAVR-DCCS:

Nonlinear anti-vibration ring with a deformable crescent-shaped cross-section (−)

\(O\) :

Center of the circle (−)

\(O_{1}\) :

The center of the outer arc of the crescent-shaped cross section (−)

\(O_{2}\) :

The center of the inner arc of the crescent-shaped cross section (−)

\(P_{zz} (\omega )\) :

The power spectral density of the excitation signal (g2/Hz)

\(P_{zy} (\omega )\) :

The cross-spectral density of the excitation-response signal (g2/Hz)

QZS:

Quasi-zero stiffness (−)

\(r_{1}\) :

The radius of the outer arc of the crescent-shaped cross section (mm)

\(r_{2}\) :

The radius of the inner arc of the crescent-shaped cross section (mm)

\(R\) :

Radius of the ring (mm)

\(s\) :

Second (−)

SODF:

Single-degree-of-freedom (−)

\(t\) :

Time (s)

\(T\) :

Kinetic energy (J)

\(T_{d}\) :

Displacement transmissibility (−)

TPU:

Thermoplastic polyurethane (−)

\(V\) :

Potential energy (J)

\(W\) :

Width of the crescent-shaped cross section (mm)

\(x\) :

Displacement of payload mass relative to base (mm)

\(x_{0}\) :

Amplitude (mm)

\(y\) :

Absolute displacements of the payload mass (mm)

\(\ddot{y}\) :

Excitation acceleration amplitude applied at the payload mass (m/s2)

\(z\) :

Absolute displacements of the base (mm)

\(z_{0}\) :

Amplitude (mm)

\(\theta\) :

The half of the circular angle of the sectoral section (deg)

\(\omega\) :

Shaker driving frequency (rad/s)

\(\phi\) :

Phase response (rad)

References

  1. Zhang, Z., Zhang, Y., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020). https://doi.org/10.1007/s11071-020-05606-6

    Article  Google Scholar 

  2. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  3. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Gao, Q.H., Tan, T., Zhang, W.M.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020). https://doi.org/10.1016/j.jsv.2020.115344

    Article  Google Scholar 

  4. Chao, T.L., Xu, X.L., Wu, Z.J., Wen, S.R., Li, F.M.: Quasi-zero stiffness vibration isolators with slender Euler beams as positive stiffness elements. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2192207

    Article  Google Scholar 

  5. Zhai, Y.J., Ma, Z.S., Ding, Q., Wang, X.P., Wang, T.: Nonlinear transverse vibrations of a slightly curved beam with hinged–hinged boundaries subject to axial loads. Arch. Appl. Mech. 92(7), 2081–2094 (2022). https://doi.org/10.1007/s00419-022-02162-w

    Article  Google Scholar 

  6. Zhang, Y.L., Wei, G., Wen, H., Jin, D.P., Hu, H.Y.: Design and analysis of a vibration isolation system with cam–roller–spring–rod mechanism. J. Vib. Control 28(13–14), 1781–1791 (2022). https://doi.org/10.1177/10775463211000516

    Article  MathSciNet  Google Scholar 

  7. Zuo, S., Wang, D.Y., Zhang, Y.S., Luo, Q.T.: Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 220, 107146 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107146

    Article  Google Scholar 

  8. Niu, M.Q., Chen, L.Q.: Nonlinear vibration isolation via a compliant mechanism and wire ropes. Nonlinear Dyn. 107(2), 1687–1702 (2022). https://doi.org/10.1007/s11071-021-06588-9

    Article  Google Scholar 

  9. Dai, W., Li, T.Y., Yang, J.: Energy flow and performance of a nonlinear vibration isolator exploiting geometric nonlinearity by embedding springs in linkages. Acta Mech. 233(4), 1663–1687 (2022). https://doi.org/10.1007/s00707-022-03182-x

    Article  Google Scholar 

  10. Liu, Y.Q., Xu, L.L., Song, C.F., Gu, H.S., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89, 1743–1759 (2019). https://doi.org/10.1007/s00419-019-01541-0

    Article  Google Scholar 

  11. Yan, B., Yu, N., Wang, Z.H., Wu, C.Y., Wang, S., Zhang, W.M.: Lever-type quasi-zero stiffness vibration isolator with magnetic spring. J. Sound Vib. 527, 116865 (2022). https://doi.org/10.1016/j.jsv.2022.116865

    Article  Google Scholar 

  12. Wu, J.L., Zeng, L.Z., Han, B., Zhou, Y.F., Luo, X., Li, X.Q., Chen, X.D., Jiang, W.: Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. Int. J. Mech. Sci. 216, 106980 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106980

    Article  Google Scholar 

  13. Yan, B., Ling, P., Zhou, Y.L., Wu, C.Y., Zhang, W.M.: Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness. J. Vib. Acoust. (2022). https://doi.org/10.1115/1.4051850

    Article  Google Scholar 

  14. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Wu, Z.Y., Zhang, W.M.: Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73, 2 (2021). https://doi.org/10.1115/1.4049946

    Article  Google Scholar 

  15. Feng, X., Jing, X.J., Guo, Y.Q.: Vibration isolation with passive linkage mechanisms. Nonlinear Dyn. 106, 1891–1927 (2021). https://doi.org/10.1007/s11071-021-06878-2

    Article  Google Scholar 

  16. Sun, X.T., Qi, Z.F., Xu, J.: Vibration properties of a knee bio-inspired nonlinear isolation structure. Int. J. Non-linear. Mech. 147, 104245 (2022). https://doi.org/10.1016/j.ijnonlinmec.2022.104245

    Article  Google Scholar 

  17. Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q., Chen, L.Q.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal Process. 145, 106967 (2020). https://doi.org/10.1016/j.ymssp.2020.106967

    Article  Google Scholar 

  18. Jin, G.X., Wang, Z.H., Yang, T.Z.: Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Appl. Math. Mech. 43(6), 813–824 (2022). https://doi.org/10.1007/s10483-022-2852-5

    Article  MathSciNet  Google Scholar 

  19. Ye, K., Ji, J.C., Brown, T.: A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mech. Syst. Signal Process. 149, 107340 (2021). https://doi.org/10.1016/j.ymssp.2020.107340

    Article  Google Scholar 

  20. Zhou, S.H., Liu, Y.L., Jiang, Z.Y., Ren, Z.H.: Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dyn. 110(1), 153–175 (2022). https://doi.org/10.1007/s11071-022-07610-4

    Article  Google Scholar 

  21. Niu, M.Q., Chen, L.Q.: Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Process. 179, 109348 (2022). https://doi.org/10.1016/j.ymssp.2022.109348

    Article  Google Scholar 

  22. Bian, J., Jing, X.J.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019). https://doi.org/10.1016/j.ymssp.2018.02.014

    Article  Google Scholar 

  23. He, Z.H., Xu, Z.D., Xue, J.Y., Jing, X.J., Dong, Y.R., Li, Q.Q.: Theoretical and experimental research of viscoelastic damping limb-like-structure device with coupling nonlinear characteristics. Int. J. Struct. Stab. Dyn. 21(12), 2130002 (2021). https://doi.org/10.1142/S0219455421300020

    Article  MathSciNet  Google Scholar 

  24. Pan, H.H., Jing, X.J., Sun, W.C., Li, Z.C.: Analysis and design of a bioinspired vibration sensor system in noisy environment. IEEE/ASME Trans. Mech. 23(2), 845–855 (2018). https://doi.org/10.1109/TMECH.2018.2803284

    Article  Google Scholar 

  25. Liu, Y.Z., Qiu, X.M., Zhang, X., Yu, T.X.: Response of woodpecker’s head during pecking process simulated by material point method. PLoS ONE 10(4), e0122677 (2015). https://doi.org/10.1371/journal.pone.0122677

    Article  Google Scholar 

  26. Wang, L.Z., Lu, S., Liu, X.Y., Niu, X.F., Wang, C., Ni, Y.K., Zhao, M.Y., Feng, C.L., Zhang, M., Fan, Y.B.: Biomechanism of impact resistance in the woodpecker’s head and its application. Sci. China Life Sci. 56, 715–719 (2013). https://doi.org/10.1007/s11427-013-4523-z

    Article  Google Scholar 

  27. Feng, X., Jing, X.J., Xu, Z.D., Guo, Y.Q.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Process. 124, 562–595 (2019). https://doi.org/10.1016/j.ymssp.2019.02.001

    Article  Google Scholar 

  28. Feng, X., Jing, X.J.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping and nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019). https://doi.org/10.1016/j.ymssp.2018.08.040

    Article  Google Scholar 

  29. Liu, C.R., Yu, K.P., Liao, B.P., Hu, R.P.: Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter. Commun. Nonlinear Sci. Numer. Simul. 95, 105654 (2021). https://doi.org/10.1016/j.cnsns.2020.105654

    Article  MathSciNet  Google Scholar 

  30. Pietrosanti, D., Angelis, M.D., Giaralis, A.: Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation. Int. J. Mech. Sci. 184, 105762 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105762

    Article  Google Scholar 

  31. Ferrand, H.L., Riley, K.S., Arrieta, A.F.: Plant-inspired multi-stimuli and multi-temporal morphing composites. Bioinspir. Biomim. 17(4), 046002 (2022). https://doi.org/10.1088/1748-3190/ac61ea

    Article  Google Scholar 

  32. Huang, W.W., Li, Y.Y., Niklas, K.J., Gielis, J., Ding, Y.Y., Cao, L., Shi, P.J.: A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo. Symmetry 12(12), 2073 (2020). https://doi.org/10.3390/sym12122073

    Article  Google Scholar 

  33. Tadrist, L., Saudreau, M., de Langre, E.: Wind and gravity mechanical effects on leaf inclination angles. J. Theor. Biol. 341, 9–16 (2014). https://doi.org/10.1016/j.jtbi.2013.09.025

    Article  MathSciNet  Google Scholar 

  34. Faisal, T.R., Hristozov, N., Western, T.L., Rey, A.D., Pasini, D.: Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry. J. Struct. Biol. 185(3), 285–294 (2014). https://doi.org/10.1016/j.jsb.2014.01.012

    Article  Google Scholar 

  35. Faisal, T.R., Abad, E.M.K., Hristozov, N., Pasini, D.: The impact of tissue morphology, cross-section and turgor pressure on the mechanical properties of the leaf petiole in plants. J. Bionic Eng. 7(4), S11–S23 (2010). https://doi.org/10.1016/S1672-6529(09)60212-2

    Article  Google Scholar 

  36. Ratstuben, Palm Beach, CANVA (2023). https://www.canva.cn/design/DAFiqhh_TaA/IkQUGTaHYtFBYgclIpEkVQ/view?utm_content=DAFiqhh_TaA&utm_campaign=designshare&utm_medium=link&utm_source=publishsharelink. Accessed 12 May 2023

  37. Sue Huhn. Palm tree fronds blow in the wind. CANVA (2023). https://www.canva.cn/design/DAFiqhh_TaA/IkQUGTaHYtFBYgclIpEkVQ/view?utm_content=DAFiqhh_TaA&utm_campaign=designshare&utm_medium=link&utm_source=publishsharelink. Accessed 12 May 2023

  38. Pasini, D.: Modelling the micro-and macrostructure effi-ciencies of a compliant petiole beam. In: The 4th Interna-tional Conference on Design and Nature, vol. 114, pp. 107–117 (2008)

  39. Faisal, M.T.: A multiscale approach to mechancial model-ing of a leaf petiole: integrating cell wall, cellular tissues, and structural morphology (2014)

  40. Windsor-Collins, A.G., Atherton, M.A., Collins, M.W., Cutler, D.F.: Section properties of palm petioles, part 1: the influence of section shape on the flexural and torsional properties of selected palm petioles (2008)

  41. Windsor-Collins, A.G., Atherton, M.A., Collins, M.W., Cutler, D.F.: Section properties of palm petioles, part 2: the relationship of petiole histology with the torsional rigidity of the palm. Trachycarpus Fortunei (2008).

  42. Han, W.J., Lu, Z.Q., Niu, M.Q., Chen, L.Q.: Analytical and experimental investigation on a NiTiNOL circular ring-type vibration isolator with both stiffness and damping nonlinearities. J. Sound Vib. 547, 117543 (2023). https://doi.org/10.1016/j.jsv.2022.117543

    Article  Google Scholar 

  43. Han, W.J., Lu, Z.Q., Niu, M.Q., Chen, L.Q.: A high-static-low-dynamics stiffness vibration isolator via an elliptical ring. Mech. Syst. Signal Process. 162, 108061 (2022). https://doi.org/10.1016/j.ymssp.2021.108061

    Article  Google Scholar 

  44. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020). https://doi.org/10.1016/j.ymssp.2019.106490

    Article  Google Scholar 

  45. Zhang, Y., Liu, Q., Lei, Y., Cao, J., Liao, W.H.: Halbach high negative stifiness isolator: modeling and experiments. Mech. Syst. Signal Process. 188, 110014 (2023). https://doi.org/10.1016/j.ymssp.2022.110014

    Article  Google Scholar 

  46. Yan, G., Wu, Z., Wei, X., Wang, S., Zou, H., Zhao, L., Qi, W., Zhang, W.: Nonlinear compensation method for quasi-zero stifiness vibration isolation. J. Sound Vib. 523, 116743 (2022). https://doi.org/10.1016/j.jsv.2021.116743

    Article  Google Scholar 

  47. Zhang, F., Xu, M.L., Shao, S.B., Xie, S.L.: A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. J. Sound Vib. 476, 115322 (2020). https://doi.org/10.1016/j.jsv.2020.115322

    Article  Google Scholar 

  48. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018). https://doi.org/10.1016/j.ymssp.2017.07.028

    Article  Google Scholar 

  49. Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93, 2339–2356 (2018). https://doi.org/10.1007/s11071-018-4328-5

    Article  Google Scholar 

  50. Zhao, F., Ji, J.C., Kan, Y., Luo, Q.T., Zhang, X.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process. 144, 106975 (2020). https://doi.org/10.1016/j.ymssp.2020.106975

    Article  Google Scholar 

  51. Zhao, F., Ji, J.C., Kan, Y., Luo, Q.T.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106093

    Article  Google Scholar 

  52. Zhao, F., Ji, J.C., Kan, Y., Luo, Q.T., Cao, S.Q.: An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dyn. 104, 349–365 (2021). https://doi.org/10.1007/s11071-021-06296-4

    Article  Google Scholar 

  53. Wen, G.L., He, J.F., Liu, J., Yu, L.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021). https://doi.org/10.1007/s11071-021-06835-z

    Article  Google Scholar 

  54. Dalela, S., Balaji, P.S., Jena, D.P.: Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn. 108(3), 1931–1971 (2022). https://doi.org/10.1007/s11071-022-07301-0

    Article  Google Scholar 

  55. Chen, R., Li, X., Tian, J., Yang, Z., Xu, J.: On the displacement transferability of variable stifiness multi-directional low frequency vibration isolation joint. Appl. Math. Model. 112, 690–707 (2022). https://doi.org/10.1016/j.apm.2022.08.021

    Article  MathSciNet  Google Scholar 

  56. Liu, C., Zhao, R., Yu, K., Lee, H.P., Liao, B.: A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams. Energy 233, 121146 (2021). https://doi.org/10.1016/j.energy.2021.121146

    Article  Google Scholar 

  57. Wang, S., Wang, Z.: Curved surface-based vibration isolation mechanism with designable stiffness: modeling, simulation, and applications. Mech. Syst. Signal Process. 181, 109489 (2022). https://doi.org/10.1016/j.ymssp.2022.109489

    Article  Google Scholar 

  58. Yao, Y.H., Li, H.G., Li, Y., Wang, X.J.: Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. Int. J. Mech. Sci. 186, 105888 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105888

    Article  Google Scholar 

  59. Li, M., Cheng, W., Xie, R.L.: A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile. Int. J. Mech. Sci. 189, 105938 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105938

    Article  Google Scholar 

  60. Ding, B.X., Li, X., Chen, S.C., Li, Y.M.: Modular quasi-zero-stiffness isolator based on compliant constant-force mechanisms for low-frequency vibration isolation. J. Vib. Control (2023). https://doi.org/10.1177/10775463231188160

    Article  Google Scholar 

  61. Lin, Y., Liu, C.X., Wen, G.L., Sedaghati, R.: A semi-active quasi-zero stiffness vibration isolator based on magnetorheological elastomer with a fast convergence switch control. J. Intell. Mater. Syst. Struct. (2023). https://doi.org/10.1177/1045389X221147628

    Article  Google Scholar 

  62. Gatti, G., Svelto, C.: Performance of a vibration isolator with sigmoidal force-deflection curve. J. Vib. Control 29(23–24), 5713–5724 (2023). https://doi.org/10.1177/10775463221139006

    Article  MathSciNet  Google Scholar 

  63. Zou, D.L., Liu, G.Y., Rao, Z.S., Tan, T., Zhang, W.M., Liao, W.H.: A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mech. Syst. Signal Process. 147, 107101 (2021). https://doi.org/10.1016/j.ymssp.2020.107101

    Article  Google Scholar 

  64. Wang, R.Y., Xu, Q.S.: Design and modeling of constant-force mechanisms: a survey. Mech. Mach. Theory 119, 1–21 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.08.017

    Article  Google Scholar 

  65. Cai, C.Q., Zhou, J.X., Wu, L.C., Wang, K., Xu, D.L., Ouyang, H.J.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020). https://doi.org/10.1016/j.compstruct.2020.111862

    Article  Google Scholar 

  66. Zolfagharian, A., Bodaghi, M., Hamzehei, R., Parr, L., Fard, M., Rolfe, B.F.: 3D-printed programmable mechanical metamaterials for vibration isolation and buckling control. Sustainability. 14(11), 6831 (2022). https://doi.org/10.3390/su14116831

    Article  Google Scholar 

  67. Zhou, J.X., Pan, H.B., Cai, C.Q., Xu, D.L.: Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial. Int. J. Mech. Mater. Des. 17, 285–300 (2021). https://doi.org/10.1007/s10999-020-09525-7

    Article  Google Scholar 

  68. Zhao, J.L., Zhou, G., Zhang, D.Z., Kovacic, I., Zhu, R., Hu, H.Y.: Integrated design of a lightweight metastructure for broadband vibration isolation. Int. J. Mech. Sci. 244, 108069 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108069

    Article  Google Scholar 

  69. Dalela, S., Ps, B., Jena, D.P., Leblouba, M.: A tunable metamaterial using a single beam element with quasi-zero-stiffness characteristics for low-frequency vibration isolation. J. Vib. Control (2023). https://doi.org/10.1177/10775463231198892

    Article  Google Scholar 

  70. Zhang, Q., Guo, D.K., Hu, G.K.: Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. Adv. Funct. Mater. 31(33), 2101428 (2021). https://doi.org/10.1002/adfm.202101428

    Article  Google Scholar 

  71. Al-Hababi, T., Cao, M., Saleh, B., Alkayem, N.F., Xu, H.: A critical review of nonlinear damping identification in structural dynamics: methods, applications, and challenges. Sensors 20(24), 7303 (2020). https://doi.org/10.3390/s20247303

    Article  Google Scholar 

  72. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer (2019). https://doi.org/10.1007/978-3-030-14023-6

    Book  Google Scholar 

  73. Hong, Y.H., Kim, H.K., Lee, H.S.: Reconstruction of dynamic displacement and velocity from measured accelerations using the variational statement of an inverse problem. J. Sound Vib. 329(23), 4980–5003 (2010). https://doi.org/10.1016/j.jsv.2010.05.016

    Article  Google Scholar 

  74. Lee, H.S., Hong, Y.H., Park, H.W.: Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures. Int. J. Numer. Methods Eng. 82(4), 403–434 (2010). https://doi.org/10.1002/nme.2769

    Article  Google Scholar 

Download references

Funding

This work was supported in part by National Natural Science Foundation of China (52105099), and the Funding by Science and Technology Projects in Guangzhou (202201010668).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuanglong Wu or Long Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Tables 9 and 10.

Table 9 Parameters of the NAVR-DCCS
Table 10 Parameters of a ring with rectangular cross-section

Appendix B

See Fig. 25 and Table 11.

Fig. 25
figure 25

a Crescent-shaped cross-section with different angles \(W\). b Crescent-shaped cross-section with different angles \(H\). c Crescent-shaped cross-section with different angles \(\theta\)

Table 11 Variations of area and moment of inertia of the cross-section with different cross-section parameters

Appendix C

$$ \frac{c}{m\omega } = \frac{{z_{0} \sin (\phi )}}{{x_{0} }} $$
(C.1)
$$ \frac{{\frac{3}{4}x_{0}^{2} k_{2} - m\omega^{2} + k_{1} + 3b^{2} k_{2} }}{{m\omega^{2} }} = \frac{{z_{0} \cos (\phi )}}{{x_{0} }} $$
(C.2)
$$ mg + bk_{1} + b^{3} k_{2} + \frac{{3bk_{2} x_{0}^{2} }}{2} = 0 $$
(C.3)

Appendix D

See Fig. 26.

Fig. 26
figure 26

a Effect of structural parameter \(W\) (Stress contour plot in MPa). b Effect of structural parameter \(H\) (Stress contour plot in MPa). c Effect of structural parameter \(\theta\) (Stress contour plot in MPa). d Effect of structural parameter \(R\) (Stress contour plot in MPa)

Appendix E

See Table 12.

Table 12 Stiffness and 95% confidence interval of the NAVR-DCCS with different parameters

Appendix F

See Table 13.

Table 13 Parameters of the experimental prototype

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Feng, J., An, E. et al. Palm petiole inspired nonlinear anti-vibration ring with deformable crescent-shaped cross-section. Nonlinear Dyn 112, 6919–6945 (2024). https://doi.org/10.1007/s11071-024-09440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09440-y

Keywords

Navigation