Skip to main content
Log in

Hippocampal CA3–CA1 synaptic network model of memory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A synaptic network model is proposed to characterize both short-term and long-term memory. The model describes the calcium concentration-dependent bistability of CaMKII phosphorylation levels and the transition of CaMKII between DOWN and UP states under different stimulation protocols. Numerical results demonstrate that short-term memory can be characterized by a trajectory tending to zero, while long-term memory can be characterized by a heteroclinic trajectory based on the principle of winnerless competition. Additionally, the results suggest that the model forms memories more efficiently with faster and longer training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Figure revised from Ref. [1]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shou, T.D.: Neurobiology, 3rd edn. Higher Education Press, Beijing, ISBN 978-7-04-035129-3:345-351 (2013)

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  3. Graupner, M., Brunel, N.: STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput. Biol. 3(11), e221 (2007)

    Google Scholar 

  4. Sjöström, P.J., Turrigiano, G.G., Nelson, S.B.: Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6), 1149–1164 (2001)

    Google Scholar 

  5. Ngezahayo, A., Schachner, M., Artola, A.: Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci. 20(7), 2451–2458 (2000)

    Google Scholar 

  6. Pfister, J.P., Gerstner, W.: Triplets of spikes in a model of spike timing dependent plasticity. J. Neurosci. 26(38), 9673–9682 (2006)

    Google Scholar 

  7. Nevian, T., Sakmann, B.: Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26(43), 11001–11013 (2006)

    Google Scholar 

  8. Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R., Landau, E.M.: Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15(6), 1403–1414 (1995)

    Google Scholar 

  9. Petersen, C.C.H., Malenka, R.C., Nicoll, R.A., Hopfield, J.J.: All-or-none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. U.S.A. 95(8), 4732–4737 (1998)

  10. Lisman, J.: Long-term potentiation: outstanding questions and attempted synthesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1432), 829–842 (2003)

  11. Graupner, M., Brunel, N.: Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Front. Comput. Neurosci. 4, 136 (2010)

    Google Scholar 

  12. Delord, B., Berry, H., Guigon, E., Genet, S.: A new principle for information storage in an enzymatic pathway model. PLoS Comput. Biol. 3(6), e124 (2007)

    Google Scholar 

  13. Lisman, J.E.: A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. 82(9), 3055–3057 (1985)

    Google Scholar 

  14. Urakubo, H., Honda, M., Froemke, R.C., Kuroda, S.: Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J. Neurosci. 28(13), 3310–3323 (2008)

    Google Scholar 

  15. Wang, H.X., Gerkin, R.C., Nauen, D.W., Bi, G.Q.: Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat. Neurosci. 8(2), 187–193 (2005)

    Google Scholar 

  16. Ziff, E.B.: Enlightening the postsynaptic density. Neuron 19(6), 1163–1174 (1997)

    Google Scholar 

  17. Yan, L.Y., Zhang, H.H., Sun, Z.K., Shen, Z.: Control analysis of electrical stimulation for epilepsy waveforms in a thalamocortical network. J. Theor. Biol. 504, 110391 (2020)

    MathSciNet  Google Scholar 

  18. Yan, L.Y., Zhang, H.H., Sun, Z.K., Liu, S., Liu, Y.Y., Xiao, P.C.: Optimization of stimulation waveforms for regulating spike-wave discharges in a thalamocortical model. Chaos, Solitons Fractals 158, 112025 (2022)

    Google Scholar 

  19. Bliss, T.V., Collingridge, G.L.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993)

    Google Scholar 

  20. Morris, R.G., Anderson, E., Lynch, G.S., Baudry, M.: Selective impairment of learning and block-ade of long-term potentiation by an N-methyl-D-aspartate receptor antag-onist, AP5. Nature 319(6056), 774–776 (1986)

    Google Scholar 

  21. Derkach, V., Barria, A., Soderling, T.R.: Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96(6), 3269–3274 (1999)

    Google Scholar 

  22. Bender, V.A., Bender, K.J., Brasier, D.J., Feldman, D.E.: Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci. 26(16), 4166–4177 (2006)

    Google Scholar 

  23. Ouyang, Y., Kantor, D., Harris, K.M., Schuman, E.M., Kennedy, M.B.: Visualization of the distribution of autophosphorylated calcium calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J. Neurosci. 17(14), 5416–5427 (1997)

    Google Scholar 

  24. Hao, L.J., Yang, Q.Y., Bi, Y.H.: Deterministic and stochastic dynamics in a gene regulatory network mediated by miRNA. Nonlinear Dyn. 103, 2903–2916 (2021)

  25. Nguyen, P.V., Kandel, E.R.: Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn. Mem. 4(2), 230–243 (1997)

    Google Scholar 

  26. Cooper, D.M., Mons, N., Karpen, J.W.: Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374(6521), 421–424 (1995)

  27. Glantz, S.B., Amat, J.A., Rubin, C.S.: cAMP signaling in neurons: patterns of neuronal expression and intracellular localization for a novel protein, AKAP 150, that anchors the regulatory subunit of cAMP-dependent protein kinase II beta. Mol. Biol. Cell 3(11), 1215–1228 (1992)

    Google Scholar 

  28. Bozon, B., Kelly, A., Josselyn, S.A., Silva, A.J., Davis, S., Laroche, S.: MAPK, CREB and Zif268 are all required for the consolidation of recognition memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1432), 805–814 (2003)

    Google Scholar 

  29. Chen, A., Muzzio, I.A., et al.: Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39(4), 655–669 (2003)

    Google Scholar 

  30. Remondes, M., Schuman, E.M.: Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. Learn. Mem. 10(4), 247–252 (2003)

    Google Scholar 

  31. Chelcie, F.H., Jefferson, W.K.: Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. 63, 1–28 (2016)

    Google Scholar 

  32. Sakaba, T., Neher, E.: Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424(6950), 775–778 (2003)

    Google Scholar 

  33. Bettler, B., Kaupmann, K., Mosbacher, J.J., Gassmann, M.: Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84(3), 835–867 (2004)

    Google Scholar 

  34. Kohl, M.M., Paulsen, O.: The roles of GABAB receptors in cortical network activity. Adv. Pharmacol. 58, 205–229 (2010)

    Google Scholar 

  35. Reuveny, E.: Structural biology: ion channel twists to open. Nature 498(7453), 182–183 (2013)

    Google Scholar 

  36. Sanders, H., Berends, M., Major, G., Goldman, M.S., Lisman, J.E.: NMDA and GABAB (KIR) conductances:the “perfect couple’’ for bistability. J. Neurosci. 33(2), 424–429 (2013)

    Google Scholar 

  37. Abarbanel, H.D., Gibb, L., Huerta, R., Rabinovich, M.I.: Biophysical model of synaptic plasticity dynamics. Biol. Cybern. 89(3), 214–226 (2003)

    Google Scholar 

  38. Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., Malinow, R.: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136–143 (2003)

    Google Scholar 

  39. Irvine, E.E., von Hertzen, L.S.J., Plattner, F., Giese, K.P.: alpha-CaMKII autophosphorylation: a fast track to memory. Trends Neurosci. 29(8), 459–465 (2006)

    Google Scholar 

  40. Fink, C.C., Meyer, T.: Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr. Opin. Neurobiol. 12(3), 293–299 (2002)

  41. Graupner, M., Brunel, N.: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci. USA 109(10), 3991–3996 (2012)

  42. Wittenberg, G.M., Wang, S.S.H.: Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006)

    Google Scholar 

  43. Sabatini, B.L., Oertner, T.G., Svoboda, K.: The life cycle of Ca(2+) ions in dendritic spines. Neuron 33(3), 439–452 (2002)

    Google Scholar 

  44. Sabatini, B.L., Svoboda, K.: Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408(6812), 589–593 (2000)

    Google Scholar 

  45. Anatol, M.Z.: Bistability in the Ca2+/Calmodulin-dependent protein kinase-phosphatase system. Biophys. J . 79(5), 2211–2221 (2000)

    Google Scholar 

  46. Hayer, A., Bhalla, U.S.: Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput. Biol. 1(2), 137–154 (2005)

    Google Scholar 

  47. Okamoto, H., Ichikawa, K.: Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca(2+)/calmodulin-dependent protein kinase II. Biol. Cybern. 82(1), 35–47 (2000)

    Google Scholar 

  48. Barria, A., Muller, D., Derkach, V., Griffith, L.C., Soderling, T.R.: Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long-term potentiation. Science 276(5321), 2042–2045 (1997)

    Google Scholar 

  49. Abarbanel, H.D.I., Gibb, L., Huerta, R., Rabinovich, M.: Biophysical model of synaptic plasticity dynamics. Biol. Cybern. 89, 214–226 (2003)

    Google Scholar 

  50. Stemmer, P., Klee, C.: Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33(22), 6859–6866 (1994)

    Google Scholar 

  51. Kennedy, M.B.: Signal-processing machines at the postsynaptic density. Science 290(5492), 750–754 (2000)

    Google Scholar 

  52. Rabinovich, M.I., Varona, P., Tristan, I., Afraimovich, V.S.: Chunking dynamics: heteroclinics in mind. Front. Comput. Neurosci. 14, 8–22 (2014)

    Google Scholar 

  53. Afraimovich, V.S., Rabinovich, M.I., Varona, P.: Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bifurcat. Chaos. 14(4), 1195–1208 (2004)

    MathSciNet  Google Scholar 

  54. Rabinovich, M., Tristan, I., Varona, P.: Neural dynamics of attentional cross-modality control. PLoS ONE 8(5), e64406 (2013)

    Google Scholar 

  55. Yang, L., Jia, A.F., Sun, W.G., Turcotte, M.: Saddle-ghost induced heteroclinic cycling in five-dimensional positively auto-regulated and mutually repressive gene regulation networks. Nonlinear Dyn. 109, 1081–1105 (2022)

    Google Scholar 

  56. Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87(6), 068102 (2001)

  57. Lengyel, I., Voss, K., Cammarota, M., Bradshaw, K., Brent, V., Murphy, K.P., Giese, S.J., Rostas, J.A., Bliss, T.V.: Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur. J. Neurosci. 20(11), 3063–3072 (2004)

    Google Scholar 

  58. Haga, T., Fukai, T.: Multiscale representations of community structures in attractor neural networks. PLoS Comput. Biol. 17(8), e1009296 (2021)

    Google Scholar 

  59. Buard, I., Coultrap, S.J., Freund, R.K., Lee, Y.S., Dell’Acqua, M.L., Silva, A.J., Bayer, K.U.: CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J. Neurosci. 30(24), 8214–8220 (2010)

  60. Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Darcy, D.P., Nicoll, R.A., Huang, Z.J., Stryker, M.P.: A cortical circuit for gain control by behavioral state. Cell 156(6), 1139–1152 (2014)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11972288, 12272295, 12072265).

Author information

Authors and Affiliations

Authors

Contributions

Original draft preparation was done by LY; funding acquisition was done by HZ and ZS; supervision was done by ZS and LD; review and editing was done by HZ and GC.

Corresponding author

Correspondence to Zhong-Kui Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1089 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, HH., Sun, ZK. et al. Hippocampal CA3–CA1 synaptic network model of memory. Nonlinear Dyn 112, 7499–7525 (2024). https://doi.org/10.1007/s11071-024-09375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09375-4

Keywords

Navigation