Skip to main content
Log in

A discrete memristive neuron and its adaptive dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Capacitive membrane and inductive channels enable the approach of neural activities in some equivalent neural circuits, and involvement of memristive term and magnetic flux can estimate the effect of electromagnetic induction. Based on the memristive neuron models, synaptic controllability and field coupling between neurons can be explored from physical aspect. Most of the biophysical neurons are defined in nonlinear oscillators, which can be mapped from the circuit equations under scale transformation, and the energy functions can be obtained in theoretical way. To enrich complex dynamics, specific terms are often introduced into the known models, and it requires the involvement of specific electric components for inducting special relation between the channel current and across voltage. Indeed, mathematical maps are effective to produce similar firing modes matching with neural activities in biological neurons. In this work, memristor is connected to a simple nonlinear circuit for building a memristive neuron, and its energy function is derived from two ways. Under linear transformation, the memristive neuron in oscillator form is converted into a memristive map, the energy function is confirmed, and an adaptive criterion is presented to regulate the intrinsic parameter, which the self-adaptive regulation property is released. The scheme provides clues to design discrete neuron models and understand its role of energy flow on the self-adaptive property and mode selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are available under reasonable request.

References

  1. Wang, Y., Zhang, D., Wang, L., et al.: Cluster synchronization induced by manifold deformation. Chaos Interdiscip. J. Nonlinear Sci. 32, 113118 (2022)

    MathSciNet  Google Scholar 

  2. Fan, H., Kong, L.W., Lai, Y.C., et al.: Anticipating synchronization with machine learning. Phys. Rev. Res. 3, 023237 (2021)

    Google Scholar 

  3. He, Z., Yao, C., Liu, S., et al.: Transmission of pacemaker signal in a small world neuronal networks: temperature effects. Nonlinear Dyn. 106, 2547–2557 (2021)

    Google Scholar 

  4. Wu, Y., Ding, Q., Li, T., et al.: Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dyn. 111, 2693–2710 (2023)

    Google Scholar 

  5. Huang, W., Yang, L., Zhan, X., et al.: Synchronization transition of a modular neural network containing subnetworks of different scales. Front. Inf. Technol. Electron. Eng. 24, 1458–1470 (2023)

    Google Scholar 

  6. Xu, Q., Ding, S., Bao, H., et al.: Piecewise-linear simplification for adaptive synaptic neuron model. IEEE Trans. Circuits Syst. II Express Briefs 69, 1832–1836 (2021)

    Google Scholar 

  7. Bao, H., Zhang, J., Wang, N., et al.: Adaptive synapse-based neuron model with heterogeneous multistability and riddled basins. Chaos Interdiscip. J. Nonlinear Sci. 32, 123101 (2022)

    MathSciNet  Google Scholar 

  8. Stepp, N., Plenz, D., Srinivasa, N.: Synaptic plasticity enables adaptive self-tuning critical networks. PLoS Comput. Biol. 11, e1004043 (2015)

    Google Scholar 

  9. Emelyanov, A.V., Nikiruy, K.E., Serenko, A.V., et al.: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights. Nanotechnology 31, 045201 (2019)

    Google Scholar 

  10. Hajian, D.N., Ramadoss, J., Natiq, H., et al.: Dynamics of Hindmarsh–Rose neurons connected via adaptive memristive synapse. Chin. J. Phys. 87, 311–329 (2024)

    MathSciNet  Google Scholar 

  11. Ramakrishnan, B., Mehrabbeik, M., Parastesh, F., et al.: A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics 11, 153 (2022)

    Google Scholar 

  12. Shen, H., Yu, F., Wang, C., et al.: Firing mechanism based on single memristive neuron and double memristive coupled neurons. Nonlinear Dyn. 110, 3807–3822 (2022)

    Google Scholar 

  13. Yang, R., Huang, H.M., Guo, X.: Memristive synapses and neurons for bioinspired computing. Adv. Electron. Mater. 5, 1900287 (2019)

    Google Scholar 

  14. Zhang, Y., He, W., Wu, Y., et al.: Highly compact artificial memristive neuron with low energy consumption. Small 14, 1802188 (2018)

    Google Scholar 

  15. An, X., Qiao, S.: The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction. Chaos Solitons Fractals 143, 110587 (2021)

    MathSciNet  Google Scholar 

  16. Wu, F.Q., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63, 625–636 (2020)

    Google Scholar 

  17. Xie, Y., Yao, Z., Hu, X., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin. Phys. B 30, 120510 (2021)

    Google Scholar 

  18. Sun, G., Yang, F., Ren, G., et al.: Energy encoding in a biophysical neuron and adaptive energy balance under field coupling. Chaos Solitons Fractals 169, 113230 (2023)

    MathSciNet  Google Scholar 

  19. Wu, F., Guo, Y., Ma, J., et al.: Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling. Appl. Math. Comput. 455, 128131 (2023)

    MathSciNet  Google Scholar 

  20. Wu, F., Yao, Z.: Dynamics of neuron-like excitable Josephson junctions coupled by a metal oxide memristive synapse. Nonlinear Dyn. 111, 13481–13497 (2023)

    Google Scholar 

  21. Zhang, H., Wang, L., Zhang, P., et al.: Estimation of biophysical properties of cell exposed to electric field. Chin. Phys. B 30, 038702 (2021)

    Google Scholar 

  22. Stubbe, M., Gimsa, J.: Maxwell’s mixing equation revisited: characteristic impedance equations for ellipsoidal cells. Biophys. J. 109, 194–208 (2015)

    Google Scholar 

  23. Maswiwat, K., Wachner, D., Gimsa, J.: Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells. Bioelectrochemistry 74, 130–141 (2008)

    Google Scholar 

  24. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A 24, 109–129 (2023)

    Google Scholar 

  25. Njitacke, Z.T., Takembo, C.N., Awrejcewicz, J., et al.: Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh–Nagumo neural network. Chaos Solitons Fractals 160, 112211 (2022)

    MathSciNet  Google Scholar 

  26. Hou, B., Hu, X., Guo, Y., et al.: Energy flow and stochastic resonance in a memristive neuron. Phys. Scr. 98, 105236 (2023)

    Google Scholar 

  27. Yang, F., Ren, G., Tang, J.: Dynamics in a memristive neuron under an electromagnetic field. Nonlinear Dyn. 111, 21917–22193 (2023)

    Google Scholar 

  28. Yamakou, M.E.: Chaotic synchronization of memristive neurons: Lyapunov function versus Hamilton function. Nonlinear Dyn. 101, 487–500 (2020)

    Google Scholar 

  29. Jia, J., Yang, F., Ma, J.: A bimembrane neuron for computational neuroscience. Chaos Solitons Fractals 173, 113689 (2023)

    MathSciNet  Google Scholar 

  30. Yang, F., Guo, Q., Ma, J.: A neuron model with nonlinear membranes. Cogn. Neurodyn. (2023). https://doi.org/10.1007/s11571-023-10017-5

    Article  Google Scholar 

  31. Guo, Y., Wu, F., Yang, F., et al.: Physical approach of a neuron model with memristive membranes. Chaos Interdiscip. J. Nonlinear Sci. 33, 113106 (2023)

    MathSciNet  Google Scholar 

  32. Mladenov, V., Kirilov, S.: Analysis of the mutual inductive and capacitive connections and tolerances of memristors parameters of a memristor memory matrix. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2013)

  33. Mladenov, V.: Analysis and simulations of hybrid memory scheme based on memristors. Electronics 7, 289 (2018)

    Google Scholar 

  34. Mladenov, V.: A modified tantalum oxide memristor model for neural networks with memristor-based synapses. In: 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2020)

  35. Yang, X., Taylor, B., Wu, A., et al.: Research progress on memristor: from synapses to computing systems. IEEE Trans. Circuits Syst. I Regul. Pap. 69, 1845–1857 (2022)

    Google Scholar 

  36. Ascoli, A., Weiher, M., Herzig, M., et al.: Graph coloring via locally-active memristor oscillatory networks. J. Low Power Electron. Appl. 12, 22 (2022)

    Google Scholar 

  37. Chen, S., Zhang, T., Tappertzhofen, S., et al.: Electrochemical-memristor-based artificial neurons and synapses-fundamentals, applications, and challenges. Adv. Mater. 35, 2301924 (2023)

    Google Scholar 

  38. Messaris, I., Ascoli, A., Demirkol, A.S., et al.: High frequency response of non-volatile memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 70, 566–578 (2022)

    Google Scholar 

  39. Jiang, B., Ke, S.W., Tao, Z.P., et al.: In-depth analysis of core–shell filaments in nonvolatile NbOx memristive device as an artificial synapse for multifunctional bionic applications. Sci. China Technol. Sci. 66, 3596–3603 (2023)

    Google Scholar 

  40. Bao, H., Chen, Z.G., Cai, J.M., et al.: Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors. Sci. China Technol. Sci. 65, 2582–2592 (2022)

    Google Scholar 

  41. Li, X.J., Wang, X., Li, P., et al.: Ternary combinational logic gates design based on tri-valued memristors. Front. Phys. 11, 1292336 (2023)

    Google Scholar 

  42. Wang, X., Zhang, X., Dong, C., et al.: Design and application of memristive balanced ternary univariate logic circuit. Micromachines 14, 1895 (2023)

    Google Scholar 

  43. Maruf, M.H., Ashrafi, M.S.I., Shihavuddin, A.S.M., et al.: Design and comparative analysis of memristor-based transistor-less combinational logic circuits. Int. J. Electron. 109, 1291–1306 (2022)

    Google Scholar 

  44. Wang, X.Y., Dong, C.T., Wu, Z.R., et al.: A review on the design of ternary logic circuits. Chin. Phys. B 30, 128402 (2021)

    Google Scholar 

  45. Maan, A.K., Jayadevi, D.A., James, A.P.: A survey of memristive threshold logic circuits. IEEE Trans. Neural Netw. Learn. Syst. 28, 1734–1746 (2016)

    MathSciNet  Google Scholar 

  46. Guo, Y., Xie, Y., Ma, J.: How to define energy function for memristive oscillator and map. Nonlinear Dyn. 111, 21903–21915 (2023)

    Google Scholar 

  47. Ma, J.: Energy function for some maps and nonlinear oscillators. Appl. Math. Comput. 463, 128379 (2024)

    MathSciNet  Google Scholar 

  48. Niven, J.E.: Neuronal energy consumption: biophysics, efficiency and evolution. Curr. Opin. Neurobiol. 41, 129–135 (2016)

    Google Scholar 

  49. Sotero, R.C., Trujillo-Barreto, N.J.: Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39, 290–309 (2008)

    Google Scholar 

  50. Yu, T., Sejnowski, T.J., Cauwenberghs, G.: Biophysical neural spiking, bursting, and excitability dynamics in reconfigurable analog VLSI. IEEE Trans. Biomed. Circuits Syst. 5, 420–429 (2011)

    Google Scholar 

  51. Wu, F.Q., Guo, Y.T., Ma, J.: Energy flow accounts for the adaptive property of functional synapses. Sci. China Technol. Sci. 66, 3139–3152 (2023)

    Google Scholar 

  52. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos Interdiscip. J. Nonlinear Sci. 33, 023110 (2023)

    MathSciNet  Google Scholar 

  53. Fox, R.F., Gatland, I.R., Roy, R., et al.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938 (1988)

    Google Scholar 

  54. Ginoux, J.M., Meucci, R., Euzzor, S., et al.: Torus breakdown in a two-stroke relaxation memristor. Chaos Solitons Fractals 153, 111594 (2021)

    MathSciNet  Google Scholar 

  55. Sharma, P.K., Prasad, S.S., Tasneem, S., et al.: Resistive tunable memristor emulator model and its application. AEU-Int. J. Electron. Commun. 160, 154500 (2023)

    Google Scholar 

  56. Sun, J., Yang, J., Xiao, X., et al.: Emotion-based behavioral inhibition and self-repairing memristive circuit. AEU-Int. J. Electron. Commun. 157, 154424 (2022)

    Google Scholar 

  57. Prasad, S.S., Kumar, P., Raj, N., et al.: A compact floating and grounded memristor model using single active element. AEU-Int. J. Electron. Commun. 157, 154426 (2022)

    Google Scholar 

  58. Yang, Y., Ma, M., Li, Z., et al.: A memristive non-smooth dynamical system with coexistence of bimodule periodic oscillation. AEU-Int. J. Electron. Commun. 153, 154279 (2022)

    Google Scholar 

  59. Zhong, H., Li, G., Xu, X.: A generic voltage-controlled discrete memristor model and its application in chaotic map. Chaos Solitons Fractals 161, 112389 (2022)

    MathSciNet  Google Scholar 

  60. Peng, Y., Sun, K., He, S.: A discrete memristor model and its application in Hénon map. Chaos Solitons Fractals 137, 109873 (2020)

    MathSciNet  Google Scholar 

  61. Bao, H., Gu, Y., Xu, Q., et al.: Parallel bi-memristor hyperchaotic map with extreme multistability. Chaos Solitons Fractals 160, 112273 (2022)

    Google Scholar 

  62. Ren, L., Mou, J., Banerjee, S., et al.: A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application. Chaos Solitons Fractals 167, 113024 (2023)

    MathSciNet  Google Scholar 

  63. Lai, Q., Yang, L.: Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors. Chaos Solitons Fractals 174, 113807 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is partially supported by National Natural Science Foundation of China under Grant No. 12072139.

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 12072139).

Author information

Authors and Affiliations

Authors

Contributions

Yanni Li and Mi Lv calculated all the numerical results and provided formal analysis. Jun Ma suggested this investigation and provided complete proof and wrote this manuscript. Xikui Hu verified the proof and numerical approach.

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lv, M., Ma, J. et al. A discrete memristive neuron and its adaptive dynamics. Nonlinear Dyn 112, 7541–7553 (2024). https://doi.org/10.1007/s11071-024-09361-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09361-w

Keywords

Navigation