Skip to main content
Log in

Dynamic performance of a novel tuned vibration absorber with nonlinear friction interfaces

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel tuned vibration absorber with frictional interfaces (FTVA) is proposed in this study, combining the benefits of a tuned absorber and nonlinear dry friction damping to dissipate energy. Firstly, the mechanism of the nonlinear dry friction damper is revealed using a simplified model with a one-degree-of-freedom tuned mass absorber and a hysteresis friction contact element. Then, a practical configuration for the FTVA is proposed, employing a metal strip to tune the absorber and incorporating frictional interfaces with adjustable normal loads. Numerical simulations and experimental investigations have been conducted, demonstrating the effectiveness of the innovative FTVA design. When the absorber is well-tuned and the frictional interfaces are properly designed, a significant reduction in vibration amplitude can be achieved, along with an expanded frequency range where vibration amplitudes are constrained. The nonlinear contact element plays a crucial role in mitigating the occurrence of additional peak vibrations, as the friction damping is activated once the system response surpasses a certain threshold. Furthermore, the effects of contact parameters, such as the normal load of the interface and the forcing level, have been extensively examined, highlighting its potential to suppress vibrations in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Hamouda, M.N.H., Pierce, G.A.: Helicopter vibration suppression using simple pendulum absorbers on the rotor blade. J. Am. Helicopter Soc. 29(3), 19–29 (1984)

    Article  Google Scholar 

  2. Marcollo, H., Gumley, J., Sincock, P. et al.: A new class of wave energy converter: the floating pendulum dynamic vibration absorber. International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 57786: V010T09A034 (2017)

  3. Sims, N.D.: Vibration absorbers for chatter suppression: a new analytical tuning methodology. J. Sound Vib. 301(3–5), 592–607 (2007)

    Article  Google Scholar 

  4. Habib, G., Kerschen, G., Stepan, G.: Chatter mitigation using the nonlinear tuned vibration absorber. Int. J. Non-Linear Mech. 91, 103–112 (2017)

    Article  Google Scholar 

  5. Hoang, N., Fujino, Y., Warnitchai, P.: Optimal tuned mass damper for seismic applications and practical design formulas. Eng. Struct. 30(3), 707–715 (2008)

    Article  Google Scholar 

  6. De Domenico, D., Ricciardi, G.: Earthquake-resilient design of base isolated buildings with TMD at basement: application to a case study. Soil Dyn. Earthq. Eng. 113, 503–521 (2018)

    Article  Google Scholar 

  7. Lupini, A., Mitra, M., Epureanu, B.I.: Application of tuned vibration absorber concept to blisk ring dampers: a nonlinear study. ASME Turbo Expo: Turbomachinery Technical Conference and Exposition. (2019)

  8. Hermann, F.: Device For Damping Vibrations Of Bodies, US0989958[P]. (1909)

  9. Den Hartog, J.P.: Mechanical Vibrations; Courier Corporation: North Chelmsford. MA, USA (1985)

    Google Scholar 

  10. Sinha, A.: Vibration of Mechanical Systems, Cambridge, (2010)

  11. Soong, T.T., Spencer, B.F.: Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Eng. Struct. 24(3), 243–259 (2002)

    Article  Google Scholar 

  12. Srinivasan, A.V.: Analysis of parallel damped dynamic vibration absorbers. J. Eng. Ind. 91(1), 282–287 (1969)

    Article  MathSciNet  Google Scholar 

  13. Novo, T., Varum, H., Teixeira-Dias, F., Rodrigues, H., et al.: Tuned liquid dampers simulation for earthquake response control of buildings. Bull. Earthq. Eng. 12, 1007–1024 (2014)

    Article  Google Scholar 

  14. Williams, K., Chiu, G., Bernhard, R.: Adaptive-passive absorbers using shape-memory alloys. J. Sound Vib. 249(5), 835–848 (2002)

    Article  Google Scholar 

  15. Weber, F., Boston, C., Malanka, M.: An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an mr damper. Smart Mater. Struct. 20(1), 015012 (2011)

    Article  Google Scholar 

  16. Weber, F.: Semi-active vibration absorber based on real-time controlled mr damper. Mech. Syst. Signal Process. 46(2), 272–288 (2014)

    Article  Google Scholar 

  17. Kela, L., Vhoja, P.: Recent studies adaptive tuned vibration absorbers/neutralizers. Appl. Mech. Rev. 62, 0608010608019 (2009)

    Article  Google Scholar 

  18. Jalili, N., Iv, D.: Structural vibration control using an active resonator absorber: modeling and control implementation. Smart Mater. Struct. 13(5), 998 (2004)

    Article  Google Scholar 

  19. Wu, Y., Li, L., Fan, Y., et al.: Design of semi-active dry friction dampers for steady-state vibration: sensitivity analysis and experimental studies. J. Sound Vib. 459, 114850 (2019)

    Article  Google Scholar 

  20. Wu, Y., Li, L., Fan, Y., et al.: Design of dry friction and piezoelectric hybrid ring dampers for integrally bladed disks based on complex nonlinear modes. Comput. Struct. (2020). https://doi.org/10.1016/j.compstruc.2020.106237

    Article  Google Scholar 

  21. Etedali, S., Seifi, M., Akbari, M.: A numerical study on optimal FTMD parameters considering soil-structure interaction effects. Geomech. Eng. 16, 527–538 (2018)

    Google Scholar 

  22. Pall, A.S., Marsh, C.: Response of friction damped braced frames. J. Struct. Eng. 108, 1313–1323 (1982)

    Google Scholar 

  23. Ricciardelli, F., Vickery, B.J.: Tuned vibration absorbers with dry friction damping. Earthq. Eng. Struct. Dyn. 28, 707–723 (1999)

    Article  Google Scholar 

  24. Gewei, Z., Basu, B.: A study on friction-tuned mass damper: harmonic solution and statistical linearization. J. Vib. Control 17, 721–731 (2011)

    Article  MathSciNet  Google Scholar 

  25. Brzeski, P., Brzeski, P., Perlikowski, P., Perlikowski, P.: Effects of play and inerter nonlinearities on the performance of tuned mass damper. Nonlinear Dyn. 88, 1027–1041 (2017)

    Article  Google Scholar 

  26. Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330(11), 2437–2448 (2010)

    Article  Google Scholar 

  27. Abé, M.: Tuned mass dampers for structures with bilinear hysteresis. J. Eng. Mech. 122(8), 797–800 (1996)

    Article  Google Scholar 

  28. Ricciardelli, F., Vickery, B.J.: Tuned vibration absorbers with dry friction damping. Earthq. Eng. Struct. Dynam. 28(7), 707–723 (1999)

    Article  Google Scholar 

  29. Ferri, A.A.: Friction damping and isolation systems. J. Mech. Des. 117, 196–206 (1995)

    Article  Google Scholar 

  30. Hua, X., Tai, Y., Huang, Z., et al.: Optimal design and performance evaluation of a novel hysteretic friction tuned inerter damper for vibration control systems. Struct. Control. Health Monit. 28(8), e2775 (2021)

    Article  Google Scholar 

  31. Wang, M.: Feasibility study of nonlinear tuned mass damper for machining chatter suppression. J. Sound Vib. 330, 1917–1930 (2011)

    Article  Google Scholar 

  32. Wang, M., Zan, T., Yang, Y., Fei, R.: Design and implementation of nonlinear TMD for chatter suppression: an application in turning processes. Int. J. Mach. Tool Manuf. 50, 474–479 (2010)

    Article  Google Scholar 

  33. Wu, Y.G., Li, L., Fan, Y., Ma, H.Y., Zucca, S., Gola, M.: Design of wave-like dry friction and piezoelectric hybrid dampers for thin-walled structures. J. Sound Vib. (2021). https://doi.org/10.1016/j.jsv.2020.115821

    Article  Google Scholar 

  34. Zhang, X., Xu, J., Ji, J.: Modeling and tuning for a time-delayed vibration absorber with friction. J. Sound Vib. 424, 137–157 (2018)

    Article  Google Scholar 

  35. Firrone, C.M., Zucca, S.: Modeling friction contacts in structural dynamics and its application to turbine bladed disk. InTech (2011)

  36. Zhang, D., Fu, J., Zhang, Q., et al.: An effective numerical method for calculating nonlinear dynamics of structures with dry friction: application to predict the vibration response of blades with underplatform dampers. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-3239-6

    Article  Google Scholar 

  37. Dixon, J.C.: The shock absorber handbook. John Wiley & Sons, (2008)

  38. Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, New York (1956)

    Google Scholar 

  39. Nishihara, O., Asami, T.: Closed-form solutions to the exact optimizations of dynamic vibration absorbers. J. Vib. Acoust. 124(4), 576 (2002)

    Article  Google Scholar 

  40. Fidlin, A., Lobos, M.: On the limiting of vibration amplitudes by a sequential friction-spring element. J. Sound Vib. 333(23), 5970–5979 (2014)

    Article  Google Scholar 

  41. Xiong, H., Kong, X., Yang, Z., et al.: Response regimes of narrow-band stochastic excited linear oscillator coupled to nonlinear energy sink. Chin. J. Aeronaut. 28(2), 457–468 (2015)

    Article  Google Scholar 

  42. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51(1), 47–57 (2008)

    Google Scholar 

  43. Nayfeh, A.H., Mook, A.D.: Nonlinear Oscillations. Clarendon, (1981)

  44. Pesaresi, L., Salles, L., Jones, A., et al.: Modeling the nonlinear behavior of an underplatform damper test rig for turbine applications. Mech. Syst. Signal Process. 85, 662–679 (2017)

    Article  Google Scholar 

  45. Zucca, S., Firrone, C.M.: A method for the design of ring dampers for gears in aeronautical applications. Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition (2010)

  46. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic Multi-Harmonic Balance Method and multiple solutions. J. Sound Vib. (2014). https://doi.org/10.1016/j.jsv.2013.09.032

    Article  Google Scholar 

  47. Schwingshackl, C.W., Petrov, E.P.: Modeling of flange joints for the nonlinear dynamic analysis of gas turbine engine casings. J. Eng. Gas Turbines Power 134(12), 122504 (2012)

    Article  Google Scholar 

  48. Salles, L., Blanc, L., Thouverez, F., et al.: Dual time stepping algorithms with the high order harmonic balance method for contact interfaces with fretting-wear. J. Eng. Gas Turb. Power 134(3), 032503 (2012)

    Article  Google Scholar 

  49. Jabbar, N.A., Hussain, I.Y., Abdullah, O.I.: Thermal and thermoelastic problems in dry friction clutch: a comprehensive review. Heat Transf 50(8), 7855–7878 (2021)

    Article  Google Scholar 

  50. Pearson, S.R., Shipway, P.H., Abere, J.O., et al.: The effect of temperature on wear and friction of a high strength steel in fretting. Wear 303(1–2), 622–631 (2013)

    Article  Google Scholar 

  51. Gao, Q., Fan, Y., Wu, Y., et al.: A harmonic balance-based method to predict nonlinear forced response and temperature rise of dry friction systems including frictional heat transfer. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08607-3

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the financial support from the National Natural Science Foundation of China (Grant Nos. 52205082 and 52075018), and the Science Center for Gas Turbine Project (Grant Nos. P2021-A-I-002-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, Y., Wang, H. et al. Dynamic performance of a novel tuned vibration absorber with nonlinear friction interfaces. Nonlinear Dyn 112, 8831–8848 (2024). https://doi.org/10.1007/s11071-024-09347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09347-8

Keywords

Navigation