Skip to main content
Log in

Stability and Hopf bifurcation analysis of a fractional-order p53 multiple time delays model under PD\(^\alpha \) control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the analysis of multiple types of time delays and fractional-order proportional-derivative (PD\(^\alpha \)) controller on the dynamics of fractional-order p53 model. The multiple types of time delay schemes are dexterously designed during the bifurcation control for the proposed system, and the comparative study is elaborately performed on bifurcation control theoretically. By analyzing the corresponding characteristic equation, some explicit conditions for the local asymptotical stability of the trivial equilibrium can be given for the fractional-order controlled system. Analysis reveals that the negative feedback delay restrains the delay threshold, while the positive feedback delay promotes the delay threshold and makes the system more robust. System dynamics is affected by fractional order, which is more conducive to the generation of system oscillations. We have adapted control system techniques and designed a PD\(^\alpha \) controller, which is used to activate p53 protein. Numerical results display that the addition of PD\(^\alpha \) controller can increase the richness of the dynamic system. It is worth noting that the differential gain parameter \(k_d\) of PD\(^\alpha \) controller has a significant impact on the system period, and the proportional gain parameter \(k_p\) can amplify the system amplitude. In addition, \(k_p\) can significantly advance the time threshold of system compared to \(k_d\). The PD controller is a good strategy to control the oscillation behaviors of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. Zhang, X.P., Liu, F., Wang, W.: Two-phase dynamics of p53 in the DNA damage response. Proc. Natl. Acad. Sci. 108(22), 8990–8995 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothkamm, K., Kruger, I., Thompson, L.H., Lobrich, M.: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine, A.J., Hu, W., Feng, Z.: The P53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–36 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Murray-Zmijewski, F., Slee, E.A., Lu, X.: A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9, 702–12 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Akyuz, N., Boehden, G.S., Susse, S., Rimek, A., Preuss, U., Scheidtmann, K.H., Wiesmuller, L.: DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol. Cell. Biol. 22, 6306–6317 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stewart, R.D.: Two-lesion kinetic model of double-strand break rejoining and cell killing. Radiat. Res. 156, 365–378 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, X.P., Liu, F., Wang, W.: Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. J. Biol. Chem. 285, 31571–31580 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, Z.S., Xie, K.H., Wang, T.S., Cao, J.D.: Stability and Hopf bifurcation of three-triangle neural networks with delays. Neurocomputing 322, 206–215 (2018)

    Article  Google Scholar 

  9. Xiao, M., Zheng, W.X., Cao, J.D.: Hopf bifurcation of an (n + 1)-neuron bidirectional associative memory neural networks model with delays. IEEE Trans. Neural Netw. Learn. Syst. 24, 118–132 (2013)

    Article  PubMed  Google Scholar 

  10. Liu, H.H., Fang, Y., Liu, Z.R.: Oscillatory dynamics in a gene regulatory network mediated by small RNA with time delay. Nonlinear Dyn. 76, 147–159 (2013)

    Article  MathSciNet  Google Scholar 

  11. Zhang, T.H., Song, Y.L., Zang, H.: The stability and Hopf bifurcation analysis of a gene expression model. J. Math. Anal. Appl. 395, 103–113 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cao, J.Z., Jiang, H.J.: Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory model with delay. Neurocomputing 99, 381–389 (2013)

    Article  Google Scholar 

  13. Xiao, M., Zheng, W.X., Jiang, G.P.: Bifurcation and oscillatory dynamics of delayed cyclic gene networks including small RNAs. IEEE Trans. Cybern. 49, 883–896 (2019)

    Article  PubMed  Google Scholar 

  14. Mao, X.C., Zhou, X.Y., Shi, T.T., Qiao, L.: Dynamical analysis of coupled bidirectional FitzHugh–Nagumo neuronal networks with multiple delays. J. Comput. Nonlinear Dyn. 14, 061002–061010 (2019)

    Article  Google Scholar 

  15. Xia, J., Jia, Y.: A mathematical model of a P53 oscillation network triggered by DNA damage. Chin. Phys. B 4, 5 (2010)

    CAS  Google Scholar 

  16. Wang, D.N., Liu, N., Yang, H.L., Yang, L.G.: Theoretical analysis of the delay on the p53 micronetwork. Adv. Differ. Equ. 2020, 1–15 (2020)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  17. Wang, C., Liu, H., Zhou, J.: Oscillatory dynamics of p53 genetic network induced by feedback loops and time delays. IEEE Trans. Nanobiosci. 18, 611–621 (2019)

    Article  Google Scholar 

  18. Arafa, A.A.M., Rida, S.Z., Khalil, M.: Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed. Phys. 6, 1 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rihan, F.A.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, 8 (2013)

    Article  MathSciNet  Google Scholar 

  20. Arjunan, M.M., Abdeljawad, T., Anbalagan, P.: Impulsive effects on fractional order time delayed gene regulatory networks: Asymptotic stability analysis. Chaos Solitons Fractals 154, 111634 (2022)

    Article  MathSciNet  Google Scholar 

  21. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  PubMed  Google Scholar 

  22. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    MathSciNet  Google Scholar 

  23. Chen, G.R., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods and applications. Int. J. Bifurc. Chaos 10, 511–548 (2000)

    Article  MathSciNet  Google Scholar 

  24. Cheng, Z.S., Cao, J.D.: Bifurcation control in small-world networks. Neurocomputing 72, 1712–1718 (2009)

    Article  Google Scholar 

  25. Li, N., Sun, H.Y., Zhang, Q.L.: Bifurcations and chaos control in discrete small-world networks. Chin. Phys. B 21, 010503 (2012)

    Article  ADS  Google Scholar 

  26. Xiao, M., Daniel, D.W.C., Cao, J.D.: Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation. Nonlinear Dyn. 58, 319–344 (2009)

    Article  MathSciNet  Google Scholar 

  27. Abed, E.H., Fu, J.H.: Local feedback stabilization and bifurcation control: I. Hopf Bifurc. Syst. Control Lett. 7, 11–17 (1986)

    Article  MathSciNet  Google Scholar 

  28. Xiao, M., Zheng, W.X., Cao, J.D.: Bifurcation control of a congestion control model via state feedback. Int. J. Bifurc. Chaos 23, 1330018 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yu, P., Chen, G.R.: Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurc. Chaos 14, 1683–1704 (2004)

    Article  MathSciNet  Google Scholar 

  30. Cheng, Z.S., Cao, J.D.: Hybrid control of Hopf bifurcation in complex networks with delays. Neurocomputing 133, 164–170 (2014)

    Article  Google Scholar 

  31. Liu, F., Guan, Z.H., Wang, H.: Controlling bifurcations and chaos in discrete small-world networks. Chin. Phys. B 17, 2405–2411 (2008)

    Article  ADS  Google Scholar 

  32. Ding, D.W., Zhang, X.Y., Cao, J.D., Wang, N., Liang, D.: Bifurcation control of complex networks model via PD controller. Neurocomputing 175, 1–9 (2016)

    Article  CAS  Google Scholar 

  33. Lu, Q., Xiao, M., Cheng, Z., Song, Y., Huang, C., Cao, J.: Stability and bifurcation analysis of a fractional-order single-gene regulatory model with delays under a novel PD\(^\alpha \) control law. Int. J. Biomath. 3, 13 (2020)

    ADS  MathSciNet  Google Scholar 

  34. Awan, M.S., Aslam, M., Liaquat, M., Bhatti, A. I., Liaquat, A.: Effect of pharmacodynamical interaction between nutlin-3a and aspirin in the activation of p53. J. Theor. Biol. 110696 (2021)

  35. Arjunan, M.M., Abdeljawad, T., Anbalagan, P.: Impulsive effects on fractional order time delayed gene regulatory networks: asymptotic stability analysis. Chaos Solitons Fract. 154, 111634 (2022)

    Article  MathSciNet  Google Scholar 

  36. Ren, F., Cao, F., Cao, J.: Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing (2015)

  37. Yan, H., Qiao, Y., Duan, L., Miao, J.: Synchronization of fractional-order gene regulatory networks mediated by miRNA with time delays and unknown parameters. J. Frankl. Inst. 5, 359 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yang, H. & Yang, L. Stability and Hopf bifurcation analysis of a fractional-order p53 multiple time delays model under PD\(^\alpha \) control. Nonlinear Dyn 112, 5663–5686 (2024). https://doi.org/10.1007/s11071-024-09330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09330-3

Keywords

Navigation