Skip to main content
Log in

Nonlinear vibrations and wear predictions of slender cylinders with loose support subjected to axial flows

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Flow-induced vibration of fuel rods subjected to axial flows frequently appears in nuclear engineering, which has been a significant scientific problem still unsolved. This paper simplifies the fuel rod as a slender cylinder with loose support in axial flows and explores nonlinear dynamics of the slender cylinder through theoretical modeling. The dynamical model is constructed with consideration of impact and friction forces attributed by the loose support. The results show that the flutter critical flow velocity and wear rate are dependent on clearance size and position of the loose support. The flow velocity range of buckling becomes narrower, while the range for flutter becomes wider with the increase in clearance size. The flow velocity range for buckled behavior is widened, the flutter flow speed range is reduced as the clearance position is varied from upward end to downward end of the cylinder. It is indicated that there are optimal values for clearance size and position of the loose support where the flutter critical flow velocity is much higher and the wear rate is lowest. The present study can provide a theoretical basis for predicting flow-induced vibrations and designing the loose support for fuel rods in the nuclear engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Elhelaly, A., Hassan, M.A., Mohany, A., Eid Moussa, S.: Effect of the flow approach angle on the dynamics of loosely-supported tube arrays. Nucl. Eng. Des. 368, 110802 (2020)

    Article  CAS  Google Scholar 

  2. Païdoussis, M.P.: Real-life experiences with flow-induced vibration. J. Fluids Struct. 22, 741–755 (2006)

    Article  ADS  Google Scholar 

  3. Païdoussis, M.P.: Fluid-structure interactions: slender structures and axial flow. Academic press, London (2014)

    Google Scholar 

  4. Lopes, J.L., Païdoussis, M.P., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: The equations of motion. J. Fluids Struct. 16, 715–737 (2002)

    Article  ADS  Google Scholar 

  5. Païdoussis, M.P., Grinevich, E., Adamovic, D., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 1: Physical dynamics. J. Fluids Struct. 16, 691–713 (2002)

    Article  ADS  Google Scholar 

  6. Semler, C., Lopes, J.L., Augu, N., Païdoussis, M.P.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 3: Nonlinear dynamics. J. Fluids Struct. 16, 739–759 (2002)

    Article  ADS  Google Scholar 

  7. Lai, J.: Analysis on streamwise fluidelastic instability of rotated triangular tube arrays subjected to two-phase flow. Mech. Syst. Sig. Process. 123, 192–205 (2019)

    Article  ADS  Google Scholar 

  8. Hassan, M.A., Weaver, D.S., Dokainish, M.A.: The effects of support geometry on the turbulence response of loosely supported heat exchanger tubes. J. Fluids Struct. 18, 529–554 (2003)

    Article  ADS  Google Scholar 

  9. M.A. Hassan, A. Mohany, Fluidelastic instability modeling of loosely supported multispan u-tubes in nuclear steam generators, J. Pressure Vessel Technol., 135 (2012).

  10. Weaver, D.S., Ziada, S., Au-Yang, M.K., Chen, S.S., Païdoussis, M.P., Pettigrew, M.J.: Flow-induced vibrations in power and process plant components—progress and prospects. J. Pressure Vessel Technol. 122, 339–348 (2000)

    Article  CAS  Google Scholar 

  11. Chu, I.C., Chung, H.J., Lee, S.: Flow-induced vibration of nuclear steam generator U-tubes in two-phase flow. Nucl. Eng. Des. 241, 1508–1515 (2011)

    Article  CAS  Google Scholar 

  12. Guo, K., Jiang, N., Qi, H., Feng, Z., Wang, Y., Tan, W.: Experimental investigation of impact-sliding interaction and fretting wear between tubes and anti-vibration bars in steam generators. Nucl. Eng. Technol. 52, 1304–1317 (2020)

    Article  CAS  Google Scholar 

  13. Rajidi, S.R., Gupta, A., Panda, S.: Vibration control of loosely supported cross-flow heat exchanger tube undergoing fluid elastic instability. IOP Conf. Ser. Mater. Sci. Eng. 872, 012068 (2020)

    Article  CAS  Google Scholar 

  14. Butt, M.F.J., Païdoussis, M.P., Nahon, M.: Dynamics of a confined pipe aspirating fluid and concurrently subjected to external axial flow: an experimental investigation. J. Fluids Struct. 104, 103299 (2021)

    Article  ADS  Google Scholar 

  15. Qian, Q., Wang, L., Ni, Q.: Vibration and stability of vertical upward-fluid-conveying pipe immersed in rigid cylindrical channel. Acta Mech. Solida Sin. 21, 331–340 (2008)

    Article  Google Scholar 

  16. Abdelbaki, A.R., Païdoussis, M.P., Misra, A.K.: A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows. J. Sound Vib. 449, 349–367 (2019)

    Article  ADS  Google Scholar 

  17. Jiang, T.L., Dai, H.L., Wang, L.: Three-dimensional dynamics of fluid-conveying pipe simultaneously subjected to external axial flow. Ocean Eng. 217, 107970 (2020)

    Article  Google Scholar 

  18. Zhou, K., Dai, H.L., Wang, L., Ni, Q., Hagedorn, P.: Modeling and nonlinear dynamics of cantilevered pipe with tapered free end concurrently subjected to axial internal and external flows. Mech. Syst. Sig. Process. 169, 108794 (2022)

    Article  Google Scholar 

  19. Moditis, K., Païdoussis, M.P., Ratigan, J.: Dynamics of a partially confined, discharging, cantilever pipe with reverse external flow. J. Fluids Struct. 63, 120–139 (2016)

    Article  ADS  Google Scholar 

  20. Chehreghani, M., Abdelbaki, A.R., Misra, A.K., Païdoussis, M.P.: Experiments on the dynamics of a cantilevered pipe conveying fluid and subjected to reverse annular flow. J. Sound Vib. 515, 116480 (2021)

    Article  Google Scholar 

  21. Joly, A., Badel, P., de Buretel, N., de Chassey, O., Cadot, A., Martin, P., Moussou, L.P.: Experimental and numerical investigation of steady fluid forces in axial flow on a cylinder confined in a cylinder array. In: Braza, M., Hourigan, K., Triantafyllou, M. (eds.) Advances in critical flow dynamics involving moving/deformable structures with design applications, pp. 89–98. Springer International Publishing, Cham (2021)

    Google Scholar 

  22. De Ridder, J., Degroote, J., Van Tichelen, K., Vierendeels, J.: Predicting modal characteristics of a cluster of cylinders in axial flow: From potential flow solutions to coupled CFD–CSM calculations. J. Fluids Struct. 74, 90–110 (2017)

    Article  Google Scholar 

  23. De Santis, D., Shams, A.: Numerical study of flow-induced vibration of fuel rods. Nucl. Eng. Des. 361, 110547 (2020)

    Article  Google Scholar 

  24. F. Daneshmand, T. Liaghat, M.P. Païdoussis, A coupled two-way fluid–structure interaction analysis for the dynamics of a partially confined cantilevered pipe under simultaneous internal and external axial flow in opposite directions, J. Pressure Vessel Technol., 144 (2021).

  25. Hassan, M.A., Hayder, M.: Modelling of fluidelastic vibrations of heat exchanger tubes with loose supports. Nucl. Eng. Des. 238, 2507–2520 (2008)

    Article  CAS  Google Scholar 

  26. Park, N.G., Suh, J.M., Jeon, K.L.: Dynamic response of a nuclear fuel rod impacting on elastoplastic gapped supports. Nucl. Eng. Des. 241, 4862–4873 (2011)

    Article  CAS  Google Scholar 

  27. Hassan, M.A., Mohany, A.: Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions. Wind Struct. 23, 157–169 (2016)

    Article  Google Scholar 

  28. Païdoussis, M.P.: Dynamics of cylindrical structures in axial flow: a review. J. Fluids Struct. 107, 103374 (2021)

    Article  ADS  Google Scholar 

  29. Wang, Y.K., Ni, Q., Wang, L.: Three-dimensional nonlinear dynamics of a cantilevered pipe conveying fluid subjected to loose constraints. Chin. Sci. Bull. 62, 4270–4277 (2017)

    Article  Google Scholar 

  30. A. Balaji, A. Thani, S. Biswas, C.P. Vyasarayani, Stability of a cross-flow heat-exchanger tube with asymmetric supports, J. Comput. Nonlinear Dyn., 17 (2022).

  31. Lai, J., Yang, S., Tan, T., Gao, L., Sun, L., Li, P.: Turbulence-induced vibration of tube bundles subjected to cross-flow and loose support. Int. J. Press. Vessels Pip. 195, 104601 (2022)

    Article  Google Scholar 

  32. Lu, L., Lai, J., Yang, S., Song, H.W., Sun, L.: Damage identification of tube bundles with crack subjected to cross-flow and loose support. Mech. Syst. Sig. Process. 164, 108293 (2022)

    Article  Google Scholar 

  33. Ding, Z., Xu, L., Liu, D., Yang, Y., Yang, J., Tang, D.: Influence of support gap on flow induced vibration of heat exchange tube. Ann. Nucl. Energy 180, 109443 (2023)

    Article  CAS  Google Scholar 

  34. Lai, J., Yang, S., Lu, L., Tan, T., Sun, L.: Two-phase flow-induced vibration fatigue damage of tube bundles with clearance restriction. Mech. Syst. Sig. Process. 166, 108442 (2022)

    Article  Google Scholar 

  35. Modarres-Sadeghi, Y., Païdoussis, M.P., Semler, C.: A nonlinear model for an extensible slender flexible cylinder subjected to axial flow. J. Fluids Struct. 21, 609–627 (2005)

    Article  ADS  Google Scholar 

  36. Hassan, M.A., Weaver, D.S., Dokainish, M.A.: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports. J. Fluids Struct. 16, 1145–1176 (2002)

    Article  ADS  Google Scholar 

  37. Antunes, J., Axisa, F., Beaufils, B., Guilbaud, D.: Coulomb friction modelling in numericalsimulations of vibration and wear work rate of multispan tube bundles. J. Fluids Struct. 4, 287–304 (1990)

    Article  ADS  Google Scholar 

  38. Païdoussis, M.P.: Dynamics of cylindrical structures subjected to axial flow. J. Sound Vib. 29, 365–385 (1973)

    Article  ADS  Google Scholar 

  39. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  40. Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. Royal Soc. London Ser. A Math. Phys. Sci. 214, 158–183 (1952)

    ADS  Google Scholar 

  41. Triantafyllou, G.S., Chryssostomidis, C.: The dynamics of towed arrays. ASME J. Offshore Mech. Arct. Eng. 111, 208–213 (1989)

    Article  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (Grant Nos:12272140, and 12322201) and National Key Research and Development Program of China (Grant Nos:2021YFF0501001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huliang Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Derivations of the potential energy

The strain energy induced by the axial elongation and bending of the cylinder is denoted as VE and VB, respectively. The deformation potential energy of the cylinder can be given by

$$ \begin{gathered} V_{S} = V_{{\text{E}}} + V_{{\text{B}}} = \frac{1}{2}E\int_{0}^{L} {\left[ {A\varepsilon^{2} + I(1 + \varepsilon_{s} )^{2} \kappa^{2} } \right]} {\text{d}}x_{0} \hfill \\ = \frac{EA}{2}\int_{0}^{L} {\left( {\frac{{F_{T} }}{EA} + \varepsilon_{s} } \right)^{2} {\text{d}}x_{0} } + \frac{EI}{2}\int_{0}^{L} {(1 + \varepsilon_{s} )^{2} \kappa^{2} {\text{d}}x_{0} } \hfill \\ \end{gathered} $$
(26)

where tension \(F_{T}\) applied by external forces or associated with gravity and friction; ε represents the axial strain; the curvature and strain of the cylinder are represented by κ and εs, respectively, written as

$$ \varepsilon_{s} = \sqrt {\left( {1 + \frac{\partial u}{{\partial x_{0} }}} \right)^{2} + \left( {\frac{\partial v}{{\partial x_{0} }}} \right)^{2} } - 1 $$
(27)
$$ \kappa = \left| {\frac{{\partial^{2} {\varvec{r}}}}{{\partial s^{2} }}} \right| = \sqrt {\left( {\frac{{\partial^{2} x}}{{\partial s^{2} }}} \right)^{2} + \left( {\frac{{\partial^{2} y}}{{\partial s^{2} }}} \right)^{2} } $$
(28)

where s denotes the curvilinear coordinate measured from the origin.

Neglecting the higher-order terms of \({\mathcal{O}}\left( {\varepsilon^{5} } \right)\), one can obtain

$$ \varepsilon_{s} = u^{\prime}+ \frac{1}{2}v\prime^{2} - \frac{1}{2}u^{\prime}v\prime^{2} - \frac{1}{8}v\prime^{4} + {\mathcal{O}}(\varepsilon^{5} ) $$
(29)
$$ \varepsilon_{s}^{2} = u\prime^{2} + 2u^{\prime}v\prime^{2} + \frac{1}{4}v\prime^{4} + {\mathcal{O}}(\varepsilon^{5} ) $$
(30)
$$ (1 + \varepsilon _{s} )^{2} \kappa ^{2} = v\prime \prime ^{2} - 2v^{{\prime \prime 2}} u^{\prime } - 2v^{{\prime \prime 2}} v^{{\prime 2}} - 2v^{\prime } v^{{\prime \prime }} u^{{\prime \prime }} + {\mathcal{O}}(\varepsilon ^{5} ) $$
(31)

Following Païdoussis et al. [38], the tension \(F_{T}\) can be written as

$$ \frac{{\partial F_{T} }}{\partial x} = - \left( {\frac{1}{2}\rho DU_{e}^{2} C_{T} + mg} \right) $$
(32)

then, using \(\partial F_{T} /\partial x_{0} = (\partial F_{T} /\partial x)(\partial x/\partial x_{0} ) = (\partial F_{T} /\partial x)\left( {1 + u^\prime } \right)\) and integrating the resulting equation from x0 to L, one can find

$$ F_{T} (x_{0} ) = \left( {\frac{1}{2}\rho DU_{e}^{2} C_{T} + mg} \right)[L - x_{0} + u(L)(1 - \overline{\delta }) - u] + F_{T} (L) $$
(33)

where \(F_{T} (L)\) can be written as

$$ F_{T} (L) = \overline{{F_{T} }} \overline{\delta } + \frac{1}{2}\rho D^{2} U_{e}^{2} C_{b} (1 - \overline{\delta }) - \left[ {\frac{1}{2}\rho DU_{e}^{2} C_{T} \left( {1 + \frac{D}{{D_{h} }}} \right) + mg} \right]\frac{L}{2}\overline{\delta } $$
(34)

\(\overline{{F_{T} }}\) is an externally imposed uniform tension and \(C_{b}\) is a base pressure coefficient. In this case, \(\overline{\delta } = 1\) indicates that the supports do not allow the downstream end slide axially and \(u(L) = 0\). Thus, the tension force can be written as

$$ F_{T} (x_{0} ) = \left( {\frac{1}{2}\rho DU_{e}^{2} C_{T} + mg} \right)\left( {\frac{1}{2}L - x_{0} - u} \right) - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }}\frac{L}{2} + \overline{{F_{T} }} $$
(35)

Substituting Eqs. (29)-(31) and (35) into Eq. (26), the variation of strain potential energy is obtained as follow:

$$ \begin{array}{*{20}l} {\delta \int_{{t_{1} }}^{{t_{2} }} {V_{S} } {\text{d}}t} \hfill & { = \iint {\left\{ { - EA\left( {u^{\prime \prime } + v^{\prime } v^{\prime \prime } } \right) - EI\left( {v^{\prime \prime } v^{\prime \prime \prime } + v^{\prime } v^{\prime \prime \prime \prime } } \right)} \right.}} \hfill \\ {} \hfill & { + \left( {\overline{{F_{T} }} - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }}\frac{L}{2}} \right)v^{\prime } v^{\prime \prime } } \hfill \\ {} \hfill & {\left. { + \left( {mg + \frac{1}{2}\rho DU_{e}^{2} C_{T} } \right)\left[ {1 + u^{\prime } - \frac{1}{2}v^{\prime 2} + \left( {\frac{L}{2} - x_{0} } \right)v^{\prime } v^{\prime \prime } } \right]} \right\}\delta u{\text{d}}x_{0} {\text{d}}t} \hfill \\ {} \hfill & { + \iint {\left\{ { - EA\left( {v^{\prime } u^{\prime \prime } + v^{\prime \prime } u^{\prime } + \frac{3}{2}v^{\prime 2} v^{\prime \prime } } \right) + EIv^{\prime \prime \prime \prime } } \right.}} \hfill \\ {} \hfill & { - EI\left( {3u^{\prime \prime \prime } v^{\prime \prime } + 4u^{\prime \prime } v^{\prime \prime \prime } + 2u^{\prime } v^{\prime \prime \prime \prime } + v^{\prime } u^{\prime \prime \prime \prime } + 2v^{{^{\prime \prime } 3}} + 2v^{\prime 2} v^{\prime \prime \prime \prime } + 8v^{\prime } v^{\prime \prime } v^{\prime \prime \prime } } \right)} \hfill \\ {} \hfill & { + \left( {mg + \frac{1}{2}\rho DU_{e}^{2} C_{T} } \right)\left[ {v^{\prime } - \frac{1}{2}v\prime^{3} + \left( {\frac{L}{2} - X} \right)\left( { - v^{\prime \prime } + v^{\prime } u^{\prime \prime } + v^{\prime \prime } u^{\prime } + \frac{3}{2}v^{\prime 2} v^{\prime \prime } } \right) + uv^{\prime \prime } } \right]} \hfill \\ {} \hfill & { + \left( {\overline{{F_{T} }} - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }}\frac{L}{2}} \right)\left. { \times \left( { - v^{\prime \prime } + v^{\prime } u^{\prime \prime } + v^{\prime \prime } u^{\prime } + \frac{3}{2}v^{\prime 2} v^{\prime \prime } } \right)} \right\}\delta v{\text{d}}x_{0} {\text{d}}t} \hfill \\ {} \hfill & {} \hfill \\ \end{array} $$
(36)

1.2 Derivations of the external fluid forces

We introduce i as the angle between the centerline of the cylinder and the relative velocity of the fluid. To determine i, we introduce θ1, the angle between the longitudinal axis of the element and the x-axis and θ2, the angle between the relative fluid-body velocity and the x-axis. Synthesizing the connection between the axial flow velocity of the undisturbed flow and the axial flow velocity with respect to the axially deformed cylinder in Lopes et al. [4], one can obtain

$$ \theta_{1} = \tan^{ - 1} \left[ {\frac{{\partial y/\partial x_{0} }}{{\partial x/\partial x_{0} }}} \right] $$
(37)
$$ \theta_{2} = \tan^{ - 1} \left[ {\frac{\partial y/\partial t}{{U_{e} \left( {1 - \frac{\partial u}{{\partial x_{0} }}} \right) - (\partial x/\partial t)}}} \right] $$
(38)

hence

$$ \sin \theta_{1} = v^{\prime} - u^{\prime}v^{\prime} - \frac{1}{2}v^{{\prime}{3}} + {\mathcal{O}}\left( {\varepsilon^{5} } \right) $$
(39)
$$ \cos \theta_{1} = 1 - \frac{1}{2}v^{{\prime}{2}} + {\mathcal{O}}\left( {\varepsilon^{4} } \right) $$
(40)

Simultaneous Eqs. (37)–(38) and \(i = \theta_{1} + \theta_{2}\) can be obtained

$$ \sin i = v^{\prime } + \frac{{\dot{v}}}{{U_{e} }} - u^{\prime } v^{\prime } + \frac{{\dot{u}\dot{v}}}{{U_{e}^{2} }} - \frac{1}{2}\left( {v\prime ^{3} + \frac{{\dot{v}^{3} }}{{U_{e}^{3} }} + \frac{{v^{{\prime 2}} \dot{v}}}{{U_{e} }} + \frac{{v^{\prime } \dot{v}^{2} }}{{U_{e}^{2} }}} \right) + {\mathcal{O}}\left( {\varepsilon ^{5} } \right) $$
(41)
$$ \cos i = 1 - \frac{1}{2}\left( {v^{{\prime 2}} + 2\frac{{v^{\prime } \dot{v}}}{{U_{e} }} + \frac{{\dot{v}^{2} }}{{U_{e}^{2} }}} \right) + {\mathcal{O}}\left( {\varepsilon ^{4} } \right) $$
(42)
$$ \begin{array}{*{20}l} {} \hfill \\ {\sin 2i = v\prime^{2} + 2\frac{{v\prime \dot{v}}}{{U_{e} }} + \frac{{\dot{v}^{2} }}{{U_{e}^{2} }} + {\mathcal{O}}\left( {\varepsilon^{4} } \right)} \hfill \\ \end{array} $$
(43)

We modify Lighthill [39] to calculate the inviscid hydrodynamic forces. The inviscid hydrodynamic force is of the same magnitude as the lift and acts in the opposite direction. In this case, the cross-sectional area is constant so that \(({{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial x_{0} )}}} \right. \kern-0pt} {\partial x_{0} )}} = 0\) and the added mass \(M(x_{0} ) = \chi \rho A\). \(\chi\) is the coefficient of added mass. The inviscid hydrodynamic force is given by

$$ \begin{array}{*{20}l} {} \hfill & {F_{A} = \left\{ {\frac{\partial }{\partial t} + \left[ {U_{e} \left( {1 - u\prime } \right) - \left( {\dot{u} + U_{e} u\prime } \right)} \right]\frac{\partial }{{\partial x_{0} }}} \right\}} \hfill \\ {} \hfill & { \, \times \left[ {V_{l} - \left( {\dot{u}v\prime + 2U_{e} u\prime v\prime } \right) - \frac{1}{2}V_{l} v\prime^{2} } \right]M + \frac{1}{2}MV_{l} v\prime V_{l} \prime + {\mathcal{O}}\left( {\varepsilon^{5} } \right),} \hfill \\ \end{array} $$
(44)

where \(V_{l} = \dot{v} + U_{e} v^{\prime}\),hence

$$ \begin{array}{*{20}l} {} \hfill & {F_{A} = M\left[ {\ddot{v} - \ddot{u}v\prime - 2\dot{u}\dot{v}\prime - \frac{1}{2}\ddot{v}v\prime^{2} - \frac{3}{2}\dot{v}\dot{v}\prime v\prime + U_{e} \left( {2\dot{v}\prime - 3\dot{u}\prime v\prime - 4u\prime \dot{v}\prime - \frac{5}{2}\dot{v}\prime v\prime^{2} - 2\dot{u}v^{\prime \prime}- \frac{3}{2}\dot{v}v\prime v^{\prime \prime}} \right)} \right.} \hfill \\ {} \hfill & {\left. { \, + U_{e}^{2} \left( {v^{\prime \prime}- 2u^{\prime \prime}v\prime - 4u\prime v^{\prime \prime}- 2v\prime^{2} v^{\prime \prime}} \right)} \right] + {\mathcal{O}}\left( {\varepsilon^{5} } \right).} \hfill \\ \end{array} $$
(45)

FL and FN are defined by Taylor [40]:

$$ F_{N} = \frac{1}{2}\rho DU_{e}^{2} \left( {C_{N} \sin i + C_{Dp} \sin^{2} i} \right) $$
(46)
$$ F_{L} = \frac{1}{2}\rho DU_{e}^{2} C_{T} \cos i $$
(47)

where CDp is the form drag coefficient related to the normal component, and the coefficients corresponding to friction in the normal and tangential directions are represented by CN and CT, respectively. Substituting Eqs. (41)-(43) into Eqs. (46) and (47), one obtains

$$ \begin{array}{*{20}l} {} \hfill & {F_{N} = \frac{1}{2}\rho DU_{e}^{2} \left[ {C_{N} \left( {v\prime + \frac{{\dot{v}}}{{U_{e} }} + \frac{{\dot{v}u\prime }}{{U_{e} }} - u\prime v\prime + \frac{{\dot{u}\dot{v}}}{{U_{e}^{2} }} - \frac{1}{2}\left( {v\prime^{3} + \frac{{\dot{v}^{3} }}{{U_{e}^{3} }} + \frac{{v\prime^{2} \dot{v}}}{{U_{e} }} + \frac{{v\prime \dot{v}^{2} }}{{U_{e}^{2} }}} \right)} \right)} \right.} \hfill \\ {} \hfill & {\left. { \, + C_{Dp} \left( {v\prime \left| {v\prime } \right| + \frac{{v\prime |\dot{v}| + \left| {v\prime } \right|\dot{v}}}{{U_{e} }} + \frac{{\dot{v}|\dot{v}|}}{{U_{e}^{2} }}} \right)} \right] + {\mathcal{O}}\left( {\varepsilon^{4} } \right),} \hfill \\ \end{array} $$
(48)
$$ F_{L} = \frac{1}{2}\rho DU_{e}^{2} C_{T} \left( {1 - \frac{1}{2}\left( {v\prime^{2} + 2\frac{{v\prime \dot{v}}}{{U_{e} }} + \frac{{\dot{v}^{2} }}{{U_{e}^{2} }}} \right)} \right) + {\mathcal{O}}\left( {\varepsilon^{4} } \right) $$
(49)

where, for simplicity, CN, CDp and CT should be independent of the axial position. Using the method proposed by Triantafyllou et al. [41], the quadratic term in the expression for FN is modified to obtain the forces that are odd for \(\dot{v}\) and \(v\prime\) so that the force always follows the opposite direction of the motion.

According to the work of Lopes et al. [4], the hydrostatic pressure forces, Fpx and Fpy, are a result of outer surface of the element being subjected to the steady-state pressure p. For a constant cross section cylinder, Fpx and Fpy can be defined as

$$ \begin{array}{*{20}l} { - F_{px} = \frac{\partial p}{{\partial x}}A\left( { - \frac{1}{2}v\prime^{2} + u\prime } \right) - v\prime v^{\prime \prime}pA + {\mathcal{O}}\left( {\varepsilon^{4} } \right)} \hfill \\ {} \hfill \\ \end{array} $$
(50)
$$ F_{py} = \frac{\partial p}{{\partial x}}A\left( {v\prime - \frac{1}{2}v\prime^{3} } \right) + pA\left( {v^{\prime \prime}- u^{\prime \prime}v\prime - u\prime v^{\prime \prime}- \frac{3}{2}v\prime^{2} v^{\prime \prime}} \right) + {\mathcal{O}}\left( {\varepsilon^{5} } \right) $$
(51)

In addition, according to Païdoussis et al. [38], we suppose that the lateral motion of the cylinder has little influence on the axial pressure distribution of the whole fluid, one obtains

$$ A\frac{\partial p}{{\partial x}} = - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }} + \rho gA $$
(52)

It is obviously that \(A(\partial p/\partial x_{0} ) = A(\partial p/\partial x)\left( {1 + u^{\prime } } \right)\). One can integrate the resulting equation from x0 = x0 to L, and thus obtain

$$ Ap(x_{0} ) = Ap(L) + \left( {\frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }} - \rho gA} \right)[L - x_{0} + u(L)(1 - \overline{\delta }) - u] + {\mathcal{O}}\left( {\varepsilon^{4} } \right) $$
(53)

where \(p(L)\) can be written as

$$ Ap(L) = \left[ {(1 - 2\mu )\overline{P}A + \rho gA\frac{L}{2}} \right]\overline{\delta } $$
(54)

where \(\mu\) is the Poisson ratio, \(\overline{P}\) is the value of p at x0 equals 1/2. The value of \(\overline{\delta }\) is consistent with that in Appendix A.1. Therefore, the final form of the steady-state pressure becomes

$$ Ap(x_{0} ) = \left[ {(1 - 2\mu )\overline{P}A + \rho gA\frac{L}{2}} \right] + \left( {\frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }} - \rho gA} \right)\left( {L - x_{0} - u} \right) + {\mathcal{O}}\left( {\varepsilon^{4} } \right) $$
(55)

Substituting Eq. (52) into Eqs. (50) and (51), we get

$$ \begin{array}{*{20}l} { - F_{px} = \left( { - \frac{1}{2}v\prime^{2} + u\prime } \right)\left( { - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }} + \rho gA} \right) - v\prime v^{\prime \prime}Ap + {\mathcal{O}}\left( {\varepsilon^{4} } \right)} \hfill \\ {} \hfill \\ \end{array} $$
(56)
$$ F_{py} = \left( {v\prime - \frac{1}{2}v\prime^{3} } \right)\left( { - \frac{1}{2}\rho DU_{e}^{2} C_{T} \frac{D}{{D_{h} }} + \rho gA} \right) + \left( {v^{\prime \prime}- u^{\prime \prime}v\prime - u\prime v^{\prime \prime}- \frac{3}{2}v\prime^{2} v^{\prime \prime}} \right)Ap + {\mathcal{O}}\left( {\varepsilon^{5} } \right) $$
(57)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xing, H., Dai, H. et al. Nonlinear vibrations and wear predictions of slender cylinders with loose support subjected to axial flows. Nonlinear Dyn 112, 5211–5228 (2024). https://doi.org/10.1007/s11071-024-09310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09310-7

Keywords

Navigation