Skip to main content
Log in

The heteroclinic and codimension-4 bifurcations of a triple SD oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the complicated heteroclinic and codimension-four bifurcations of a triple SD (smooth and discontinuous) oscillator are investigated by analyzing the bifurcation sets in three-dimensional parameter space. The structure of the transition set including the equilibrium bifurcation set and a special kind of heteroclinic orbit bifurcation set is constructed comprising of a catastrophe point of the fifth order, the catastrophe curves of third order and also the catastrophe surfaces of the first order, respectively, according to the restoring forces and also the potentials, respectively. Also, a theorem of structural stability of heteroclinic orbit in 2-dimensional Hamilton system is introduced to find the heteroclinic bifurcation set. The equilibria and the phase structures are classified and shown in details on the transition set and the enclosed structurally stable areas for smooth and discontinuous cases, respectively. The normal forms for each bifurcation surface are built up showing the complex supercritical subcritical pitchfork bifurcations and also the double saddle-node bifurcations, along with the bifurcations of homoclinic and heteroclinic orbit. Taken one of the bifurcation surfaces as an example, the complicated bifurcation is investigated by employing subharmonic Melnikov functions including Hopf, double Hopf, the closed orbit and also the homoclinic/heteroclinic bifurcations. The results presented herein this paper enriched the complex dynamic behavior for the geometrical nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hayashi, C.: Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton (2014)

  2. Lenci, S., Rega, G.: Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonlinear Dyn. 34, 249–268 (2003)

    Article  MathSciNet  Google Scholar 

  3. Várkonyi, P., Domokos, G.: Symmetry, optima and bifurcations in structural design. Nonlinear Dyn. 43, 47–58 (2006)

    Article  MathSciNet  Google Scholar 

  4. Padthe, A., Chaturvedi, N., Bernstein, D., et al.: Feedback stabilization of snap-through buckling in a preloaded two-bar linkage with hysteresis. Int. J. Non Linear Mech. 43(4), 277–291 (2008)

    Article  ADS  Google Scholar 

  5. Avramov, K., Mikhlin, Y.: Snap-through truss as a vibration absorber. J. Vib. Control 10(2), 291–308 (2004)

    Article  MathSciNet  Google Scholar 

  6. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Article  ADS  Google Scholar 

  7. Kovacic, I., Brennan, M., Waters, T.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  ADS  Google Scholar 

  8. Carrella, A., Brennan, M.J., Kovacic, I., et al.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 332, 707–717 (2009)

    Article  ADS  Google Scholar 

  9. Carrella, A., Friswell, M., Zotov, A., et al.: Using nonlinear springs to reduce the whirling of a rotating shaft. Mech. Syst. Signal Process. 23, 2228–2235 (2009)

    Article  ADS  Google Scholar 

  10. Zhu, G., Liu, J., Cao, Q., et al.: A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Sci. China Technol. Sci. 63(3), 496–505 (2020)

    Article  ADS  Google Scholar 

  11. Thomson, A., Thompson, W.: Dynamics of a bistable system: the “click’’ mechanism in dipteran flight. Acta Biotheor 26(1), 19–29 (1977)

    Article  Google Scholar 

  12. Brennan, M., Elliott, S., Bonello, P., et al.: The “click’’ mechanism in dipteran flight: if it exists, then what effect does it have? J. Theor. Biol 224(2), 205–213 (2003)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  13. Lenz, M., Crow, D., Joanny, J.: Membrane buckling induced by curved filaments. Phys. Rev. lett. 103(3), 038101 (2009)

    Article  ADS  PubMed  Google Scholar 

  14. Dawson, J.: Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113(2), 383 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  15. Tonks, L.: Oscillations in ionized gases. Plasma and Oscillations. Pergamon, PP. 122–139 (1961)

  16. Calvayrac, F., Reinhard, P., Suraud, E., et al.: Nonlinear electron dynamics in metal clusters. Phys. Rep. 337(6), 493–578 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Duffing, G.: Erzwungene schwingungen bei veränderlicher eigenfrequenz[J], p. 7. Braunschweig, Vieweg u. Sohn (1918)

    Google Scholar 

  18. Carrella, A., Friswell, M., Zotov, A., et al.: Using nonlinear springs to reduce the whirling of a rotating shaft. Mech. Syst. Signal Process. 23, 2228–2235 (2009)

    Article  ADS  Google Scholar 

  19. Carrella, A., Brennan, M., Waters, T., et al.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  20. Kanamaru, T.: Van der Pol oscillator. Scholarpedia 2(1), 2202 (2007)

    Article  ADS  Google Scholar 

  21. Pleijel, Å.: Some remarks about the limit point and limit circle theory. Arkiv för Matematik 7(6), 543–550 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ueda, Y.: Randomly transitional phenomena in the system governed by Duffing’s equation. J. Stat. Phys. 20, 181–196 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  23. Edward, N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  24. Cao, Q., Wiercigroch, M., Pavlovskaia, E., et al.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74(4), 046218 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tian, R., Cao, Q., Li, Z.: Hopf bifurcations for the recently proposed smooth-and-discontinuous oscillator. Chinese Phys. Lett. 27(7), 074701 (2010)

    Article  ADS  Google Scholar 

  26. Tian, R., Cao, Q., Yang, S.: The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn. 59(1–2), 19 (2010)

    Article  MathSciNet  Google Scholar 

  27. Tian, R., Yang, X., Cao, Q., et al.: Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force. Chinese Phys. B 21(2), 020503 (2012)

    Article  ADS  Google Scholar 

  28. Cao, Q., Xiong, Y., Wiercigroch, M.: Resonances of the SD oscillator due to the discontinuous phase. J. Appl. Anal. Comput. 1(2), 183–191 (2011)

    MathSciNet  Google Scholar 

  29. Zhang, Y., Cao, Q.: The recent advances for an archetypal smooth and discontinuous oscillator. Int. J. Mech. Sci. 214, 106904 (2022)

    Article  Google Scholar 

  30. Han, Y., Cao, Q., Chen, Y., et al.: A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Sci. China Phys. Mech. Astron. 55, 1832–1843 (2012)

    Article  ADS  Google Scholar 

  31. Han, Y., Cao, Q., Chen, Y., et al.: A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Sci. China Phys. Mech. Astron. 55, 1832–1843 (2012)

    Article  ADS  Google Scholar 

  32. Cao, Q., Han, Y., Liang, T., et al.: Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator. Int. J. Bifurcation Chaos 24(01), 1430005 (2014)

    Article  ADS  Google Scholar 

  33. Han, Y., Cao, Q., Ji, J.: Nonlinear dynamics of a smooth and discontinuous oscillator with multiple stability. Int. J. Bifur. Chaos 25(13), 1530038 (2015)

    Article  MathSciNet  Google Scholar 

  34. Zhu, G., Cao, Q., Wang, Z., et al.: Road to entire insulation for resonances from a forced mechanical system. Sci. Rep. 12(1), 21167 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, Y.: Nonlinear dynamics of a class of geometrical nonlinear system and its application. PhD thesis. Harbin Institute of Technology (2015)

  36. Dangelmayr, G., Wegelin, M.: On a codimension-four bifurcation occurring in optical bistability. Singularity Theory and its Applications: Warwick, Part II: Singularities, Bifurcations and Dynamics. Springer, Berlin, 2006, 107–121 (1989)

  37. Krauskopf, B., Osinga, H.: A codimension-four singularity with potential for action. Mathematical Sciences with Multidisciplinary Applications: In Honor of Professor Christiane Rousseau. And In Recognition of the Mathematics for Planet Earth Initiative. Springer International Publishing, PP. 253–268 (2016)

  38. Eilertsen, J., Magnan, J.: On the chaotic dynamics associated with the center manifold equations of double-diffusive convection near a codimension-four bifurcation point at moderate thermal Rayleigh number[J]. Int. J. Bifur. Chaos 28(08), 1850094 (2018)

    Article  MathSciNet  Google Scholar 

  39. Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 103(1), 189–192 (1988)

  40. Armbruster, D., Chossat, P., Oprea, I.: Structurally stable heteroclinic cycles and the dynamo dynamics. Dynamo and Dynamics, a Mathematical Challenge, PP. 313–322 (2001)

  41. Rabinowitz, P.: Heteroclinics for a Hamiltonian system of double pendulum type. J Juliusz Schauder Center 9, 41–76 (1997)

  42. Wang, L., Benenti, G., Casati, G., et al.: Ratchet effect and the transporting islands in the chaotic sea. Phys. Rev. Lett. 99(24), 244101 (2007)

  43. Lichtenberg, A., Lieberman, M.: Regular and Chaotic Dynamics. Springer, New York (1992)

  44. Sagdeev, R., Usikov, D., Zakharov, M., et al.: Minimal chaos and stochastic webs. Nature 326(6113), 559–563 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. Daza, A., Wagemakers, A., Sanjuán, M., et al.: Testing for Basins of Wada. Sci. Rep. 5, 16579 (2015). https://doi.org/10.1038/srep16579

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y.: Wada basin boundaries and generalized basin cells in a smooth and discontinuous oscillator. Nonlinear Dyn. 106, 2879–2891 (2021). https://doi.org/10.1007/s11071-021-06926-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China Granted No. 11732006 (key project).

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingjie Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Phase structures

1.1 Smooth cases

Phase portraits of smooth case for \(\alpha >0\) and \(\gamma >0\) are plotted in Fig. 11. Orange lines represent small periodic orbits, green and blue lines represent large periodic orbits which encircle heteroclinic or homoclinic orbits, and black lines represent heteroclinic or homoclinic orbits.

Fig. 11
figure 11

Phase portraits for \(\alpha >0\) and \(\gamma >0\) with a catastrophe point, 5 catastrophe curves, 7 bifurcation surfaces and 5 areas (The value of parameters and the belonged set are shown in each figure legend)

Fig. 12
figure 12

Bifurcation diagrams for \(\alpha =0\): a. equilibrium bifurcation surfaces; b. bifurcation sets on \(\beta \)-\(\gamma \) plane. (Bifurcation sets divide the \((\beta ,\gamma )\) plane into three persistent regions, marked \(\varOmega _3\), \(\varOmega _4\) and \(\varOmega _5\), for which the corresponding phase portraits are persistent, on the boundaries \(\textrm{B}_{3-1}\), \(\textrm{B}_{3-2}\), \(\textrm{B}_5\) \(\textrm{B}_7\), the portraits are nonpersistent)

1.2 Discontinuous cases

For \(\alpha =0\) and \(\gamma >0\), only \(x=0\) is discontinuous. The restoring force can be written as \(f(x,0,\beta ,\gamma )=3x-\textrm{sgn}x-\dfrac{x+\beta }{\sqrt{(x+\beta )^2+\gamma ^2}}-\dfrac{x-\beta }{\sqrt{(x-\beta )^2+\gamma ^2}}\). The bifurcation diagram along with the bifurcation sets is shown in Fig. 12. And the phase portraits corresponding to each set and each area are shown in Fig. 13.

Fig. 13
figure 13

Phase portraits for \(\alpha =0\) (The value of parameters and the belonged set are shown in each figure legend)

For \(\alpha >0\), \(\beta >0\) and \(\gamma =0\), \(x=\beta \) and \(x=-\beta \) are discontinuous. The restoring force can be written as \(f(x,\alpha ,\beta ,0)=-\dfrac{x}{\sqrt{x^2+\alpha ^2}}-\textrm{sgn}(x+\beta )-\textrm{sgn}(x-\beta )\). The bifurcation diagram along with the bifurcation sets is shown in Fig. 14. The corresponding phase portraits are shown in Fig. 15.

For \(\alpha =0\), \(\beta >0\) and \(\gamma =0\), \(x=0\), \(x=\beta \) and \(x=-\beta \) are all discontinuous. The restoring force can be written as \(f(0,\beta ,0)=3x-\textrm{sgn}x-\textrm{sgn}(x+\beta )-\textrm{sgn}(x-\beta )\). The bifurcation diagram is shown in Fig. 16 for x versus \(\beta \). The phase portraits are plotted in Fig. 17.

Relationship between bifurcation surfaces and catastrophe curves

To prove the relationship between bifurcation surfaces and catastrophe curves shown in Eq. (8), set \(\textrm{B}_1\) to \(\textrm{B}_7\) are divided into a series of sets as shown in the following

Fig. 14
figure 14

Bifurcation diagrams for \(\gamma =0\): a. equilibrium bifurcation surfaces; b. bifurcation sets on \(\alpha \)-\(\beta \) plane. (Bifurcation sets divide the \((\alpha ,\beta )\) plane into five persistent regions, marked \(\varOmega _1\) to \(\varOmega _5\), for which the corresponding phase portraits are persistent, on the boundaries \(\textrm{B}_1\) to \(\textrm{B}_7\), the portraits are nonpersistent)

Fig. 15
figure 15

Phase portraits for \(\gamma =0\) (The value of parameters and the belonged set are shown in each figure legend)

$$\begin{aligned}&{\mathcal {M}}_+=\{ (\alpha ,\beta ,\gamma )\vert \exists x_1<0<x_2,\\&f(x_i)=f'(x_i)=0,i=1,2, f''(x_1)<0<f''(x_2) \},\\&{\mathcal {M}}_-=\{ (\alpha ,\beta ,\gamma )\vert \exists x_1<0<x_2,\\&f(x_i)=f'(x_i)=0,i=1,2, f''(x_1)>0>f''(x_2) \},\\&{\mathcal {N}}_-=\{ (\alpha ,\beta ,\gamma )\vert \exists x>0, f(x)<0 \},\\&{\mathcal {N}}_+=\{ (\alpha ,\beta ,\gamma )\vert \forall x>0, f(x)>0 \},\\&{\mathcal {E}}_-^i=\{ (\alpha ,\beta ,\gamma )\vert C_i(\alpha ,\beta ,\gamma )<0 \},\\&{\mathcal {E}}_+^i=\{ (\alpha ,\beta ,\gamma )\vert C_i(\alpha ,\beta ,\gamma )>0 \},\quad (i=1,3,5)\\&{\mathcal {G}}=\{ (\alpha ,\beta ,\gamma )\vert \exists x_i,\\&V(x_i)=V(0), V'(x_i)=0, V''(x_i)<0,i=1,2 \},\\&{\mathcal {K}}=\{ (\alpha ,\beta ,\gamma )\vert \exists x_1<0<x_2,\\&f(x_i)=f'(x_i)=f''(x)=0,i=1,2 \}.\\ \end{aligned}$$

It is obvious that \({\mathcal {N}}_\pm \) and \({\mathcal {E}}_\pm ^i\) are areas, \({\mathcal {M}}_\pm \) and \({\mathcal {G}}\) are surfaces, \({\mathcal {K}}\) is curve. And we have

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {M}}_+\cap {\mathcal {M}}_-={\mathcal {N}}_+\cap {\mathcal {N}}_-={\mathcal {E}}_+^i\cap {\mathcal {E}}_-^i=\varnothing ,\quad \partial ^2{\mathcal {E}}_\pm ^i=\varnothing \\ \partial {\mathcal {E}}_-^i=\partial {\mathcal {E}}_+^i=\{ (\alpha ,\beta ,\gamma )\vert C_i(\alpha ,\beta ,\gamma )=0 \},\\ \partial {\mathcal {N}}_-=\partial {\mathcal {N}}_+={\mathcal {M}}_+, \quad \partial {\mathcal {M}}_-=\partial {\mathcal {M}}_+={\mathcal {K}}. \end{array}\right. } \end{aligned}$$
(B1)

Also, we give some lemmas about the characteristics of restoring force f(x) without proving:

Lemma 1

\(f(-x)=-f(x)\), \(\lim \limits _{x\rightarrow \pm \infty }f(x)=\pm \infty \) and \(f^{(2n)}(0)=0, n\in {\mathbb {N}}\);

Lemma 2

f(x) has at most 3 zero points for \(x\in (0,+\infty )\);

Lemma 3

f(x) has at most 3 extreme points and 2 inflection points for \(x\in (0,+\infty )\);

Lemma 4

if \(f'(0)=f'''(0)=0\), then \(f^{(5)}(0)<0\iff (\alpha ,\beta ,\gamma )\in {\mathcal {N}}_-\);

Lemma 5

if \(f'(0)=f'''(0)=0\), then \(f^{(5)}(0)>0\iff (\alpha ,\beta ,\gamma )\in {\mathcal {N}}_+\);

Lemma 6

if \(f'(0)=0\) and \((\alpha ,\beta ,\gamma )\in {\mathcal {M}}_+\), then \(C_3(\alpha ,\beta ,\gamma )>0\).

(1)

Set \(\textrm{B}_1\) can be divided into \(\textrm{B}_1={\mathcal {E}}_+^1\cap {\mathcal {M}}_+\) and \(\partial \textrm{B}_1\) can be divided into \(\partial \textrm{B}_1=(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_+)\cup ({\mathcal {E}}_+^1\cap \partial {\mathcal {M}}_\pm )\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm )\).

We have \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_+=\textrm{L}_4\), \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm =\textrm{P}\) and

$$\begin{aligned}{} & {} {\mathcal {E}}_+^1\cap \partial {\mathcal {M}}_\pm =\lim \limits _{x_i\rightarrow 0}\{ (\alpha ,\beta ,\gamma )\vert C_1(\alpha ,\beta ,\gamma )>0;\nonumber \\ {}{} & {} \exists x_1<0<x_2, f(x_i)=f'(x_i)=0,i=1,2, f''(x_1)\nonumber \\ {}{} & {} <0<f''(x_2) \}. \end{aligned}$$
(B2)
Fig. 16
figure 16

Bifurcation diagrams for \(\alpha =0\) and \(\gamma =0\)

Fig. 17
figure 17

Phase portraits for \(\alpha =0\) and \(\gamma =0\) (The value of parameters and the belonged set are shown in each figure legend)

Assume that \(f(x)=ax(x^2-x_i^2)^2+bx^3(x^2-x_i^2)^3+cx^5(x^2-x_i^2)^4+o(x^7)\), which is

$$\begin{aligned}{} & {} f(x)=ax_i^4x-(2ax_i^2+bx_i^6)x^3+(a+3bx_i^4+cx_i^8)\nonumber \\ {}{} & {} x^5+o(x^7), \end{aligned}$$
(B3)

and let Eq. (B3) be the Taylor series of the restoring force, so that \(C_1(\alpha ,\beta ,\gamma )=ax_i^4\), \(C_3(\alpha ,\beta ,\gamma )=-(2ax_i^2+bx_i^6)\) and \(C_5(\alpha ,\beta ,\gamma )=(a+3bx_i^4+cx_i^8)\), where \(x_i=x_i(\alpha ,\beta ,\gamma )\) and \(a>0\). Let \(x_i\rightarrow 0\) and we can obtain \(\lim \limits _{x_i\rightarrow 0}C_1(\alpha ,\beta ,\gamma )=0\), \(\lim \limits _{x_i\rightarrow 0}C_3(\alpha ,\beta ,\gamma )=0\) and \(\lim \limits _{x_i\rightarrow 0}C_5(\alpha ,\beta ,\gamma )=a>0\).

Therefore, we have \({\mathcal {E}}_+^1\cap \partial {\mathcal {M}}_\pm =\textrm{L}_5\), and \(\partial \textrm{B}_1=\textrm{L}_4\cup \textrm{L}_5\cup \textrm{P}\).

(2)

Set \(\textrm{B}_2\) can be divided into \(\textrm{B}_2=\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap {\mathcal {N}}_-\) and \(\partial \textrm{B}_2\) can be divided into \(\partial \textrm{B}_2=(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap {\mathcal {N}}_-)\cup (\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap \partial {\mathcal {N}}_\pm )\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap \partial {\mathcal {N}}_\pm )\).

From lemma 4 we have \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap {\mathcal {N}}_-=\textrm{L}_3\), and form lemma 6 we have \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap \partial {\mathcal {N}}_\pm =\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_+={\mathcal {L}}_4\), we also have \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap \partial {\mathcal {N}}_\pm =\textrm{P}\). Therefore, \(\partial {B}_2=\textrm{L}_3\cup \textrm{L}_4\cup \textrm{P}\).

(3)

Set \(\textrm{B}_3\) can be divided into \(\textrm{B}_3={\mathcal {E}}_-^1\cap {\mathcal {M}}_+\) and \(\partial \textrm{B}_3\) can be divided into \(\partial \textrm{B}_3=(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_+)\cup ({\mathcal {E}}_-^1\cap \partial {\mathcal {M}}_\pm )\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm )\).

It is obvious that \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_+=\textrm{L}_4\), \({\mathcal {E}}_-^1\cap \partial {\mathcal {M}}_\pm ={\mathcal {E}}_-^1\cap {\mathcal {K}}=\textrm{L}_1\) and \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm =\textrm{P}\). Therefore, \(\partial \textrm{B}_3=\textrm{L}_1\cup \textrm{L}_4\cup \textrm{P}\).

(4)

Set \(\textrm{B}_4\) can be divided into \(\textrm{B}_4=\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap {\mathcal {N}}_+\) and \(\partial \textrm{B}_4\) can be divided into \(\partial \textrm{B}_4=(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap {\mathcal {N}}_+)\cup (\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap \partial {\mathcal {N}}_\pm )\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap \partial {\mathcal {N}}_\pm )\).

From lemma 5 we have \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap {\mathcal {N}}_+=\textrm{L}_5\). We also have \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_+^3\cap \partial {\mathcal {N}}_\pm =\textrm{L}_4\) and \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {E}}_\pm ^3\cap \partial {\mathcal {N}}_\pm =\textrm{P}\). Therefore, \(\partial {B}_4=\textrm{L}_4\cup \textrm{L}_5\cup \textrm{P}\).

(5)

Set \(\textrm{B}_5\) can be divided into \(\textrm{B}_5={\mathcal {E}}_-^1\cap {\mathcal {M}}_-\) and \(\partial \textrm{B}_5\) can be divided into \(\partial \textrm{B}_5=(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_-)\cup ({\mathcal {E}}_-^1\cap \partial {\mathcal {M}}_\pm )\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm )\).

It is obvious that \({\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm =\textrm{L}_1\), \(\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {M}}_\pm =\textrm{P}\) and

$$\begin{aligned}{} & {} \partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_-=\lim \limits _{C_1\rightarrow 0^-}\{ (\alpha ,\beta ,\gamma )\vert C_1(\alpha ,\beta ,\gamma )<0;\nonumber \\ {}{} & {} \exists x_1<0<x_2,\nonumber \\{} & {} \quad f(x_i)=f'(x_i)=0,i=1,2, f''(x_1)>0>f''(x_2) \}.\nonumber \\ \end{aligned}$$
(B4)

Considering \(f(0)=f(x_i)=0\), \(f'(0)<0\), \(f'(x_i)=0\), \(f''(0)=0\), \(f''(x_i)<0\) and lemma 3, we have

  1. (a).

    there exists minimum points \(x_\textrm{I}\in (0,x_i)\) and \(\exists x_\textrm{II}\in (x_i,+\infty )\), \(f(x_\textrm{I})<0\), \(f(x_\textrm{II})<0\), \(f'(x_\textrm{I})=f'(x_\textrm{II})=0\), \(f''(x_\textrm{I})>0\), \(f''(x_\textrm{II})>0\);

  2. (b).

    \(\exists x_a\in (x_\textrm{I},x_i)\), \(\exists x_b\in (x_i,x_\textrm{II})\), \(f''(x_a)=0\), \(f''(x_b)=0\);

  3. (c).

    \(f'(x)\) monotone increases in \((0,x_a)\), monotone decreases in \((x_a,x_b)\) and monotone increases in \((x_b,+\infty )\).

So it is clear that

$$\begin{aligned} f(x_\textrm{I})=\int _0^{x_\textrm{I}}f'(x)dx>f'(0)x_\textrm{I}, \end{aligned}$$

let \(f'(0)\rightarrow 0^-\) and we have \(f(x_\textrm{I})\rightarrow 0^-\), then we have \(f(x)\rightarrow 0^-\) for \(\forall x\in (0,x_i)\) because \(f(x_\textrm{I})\le f(x)<0\) in \((0,x_i)\). From lemma 2, it can be derived that

$$\begin{aligned} \lim \limits _{f'(0)\rightarrow 0^-}x_i=0. \end{aligned}$$
(B5)

Assume that \(f(x)=ax(x^2-x_i^2)^2+bx^3(x^2-x_i^2)^3+cx^5(x^2-x_i^2)^4+o(x^7)\) and \(a<0\), which is the same form as Eq. (B3). Then let it be the Taylor series of the restoring force, so that \(C_1(\alpha ,\beta ,\gamma )=ax_i^4\), \(C_3(\alpha ,\beta ,\gamma )=-(2ax_i^2+bx_i^6)\) and \(C_5(\alpha ,\beta ,\gamma )=(a+3bx_i^4+cx_i^8)\), where \(x_i=x_i(\alpha ,\beta ,\gamma )\) and \(a>0\). Let \(x_i\rightarrow 0\) and we can obtain \(\lim \limits _{C_1\rightarrow 0^-}C_3(\alpha ,\beta ,\gamma )=0\) and \(\lim \limits _{C_1\rightarrow 0^-}C_5(\alpha ,\beta ,\gamma )=a<0\).

Therefore, we have \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {M}}_-=\textrm{L}_3\), and \(\partial \textrm{B}_5=\textrm{L}_1\cup \textrm{L}_3\cup \textrm{P}\).

(6)

Set \(\textrm{B}_6\) can be divided into \(\textrm{B}_6=\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_-^3\) and \(\partial \textrm{B}_6\) can be divided into \(\partial \textrm{B}_6=\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {E}}_\pm ^3\), which is

$$\begin{aligned} \partial \textrm{B}_6=\{ (\alpha ,\beta ,\gamma )\vert C_1(\alpha ,\beta ,\gamma )=0;C_3(\alpha ,\beta ,\gamma )=0 \}. \end{aligned}$$
(B6)

It is obvious that \(\partial \textrm{B}_6=\textrm{L}_3\cup \textrm{L}_5\cup \textrm{P}\).

(7)

Set \(\textrm{B}_7\) can be divided into \(\textrm{B}_7={\mathcal {E}}_-^1\cap {\mathcal {G}}\) and \(\partial \textrm{B}_7\) can be divided into \(\partial \textrm{B}_7=(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {G}})\cup ({\mathcal {E}}_-^1\cap \partial {\mathcal {G}})\cup (\partial {\mathcal {E}}_\pm ^1\cap \partial {\mathcal {G}})\), where

$$\begin{aligned}&\partial {\mathcal {G}}=\{ (\alpha ,\beta ,\gamma )\vert \exists x_1<0<x_2, \\&V(x_i)=V(0), V'(x_i)=V''(x_i)=0, i=1,2 \}. \end{aligned}$$
(B6)
Fig. 18
figure 18

Heteroclinic orbits for Hamilton system: a \(a=0.95\), \(b=-1\); b \(a=1\), \(b=-1\); c \(a=1.05\), \(b=-1\)

Fig. 19
figure 19

Heteroclinic orbits for Hamilton system: a \(a=\frac{1}{2}\), \(b=-1\), \(c=-4\), \(q=3.98\); b \(a=\frac{1}{2}\), \(b=-1\), \(c=-4\), \(q=4\); c \(a=\frac{1}{2}\), \(b=-1\), \(c=-4\), \(q=4.02\)

It is obvious that \({\mathcal {E}}_-^1\cap \partial {\mathcal {G}}=\textrm{L}_2\subseteq \textrm{B}_3\). And

$$\begin{aligned}{} & {} \partial {\mathcal {E}}_\pm ^1\cap {\mathcal {G}}=\lim \limits _{C_1\rightarrow 0^-}\{ (\alpha ,\beta ,\gamma )\vert C_1(\alpha ,\beta ,\gamma )<0;\nonumber \\ {}{} & {} \exists x_1<0<x_2,\nonumber \\{} & {} \quad V(x_i)=V(0), V'(x_i)=0, V''(x_i)<0, i=1,2 \}.\nonumber \\ \end{aligned}$$
(B7)

Considering \(\int _0^{x_i}f(x)dx=V(x_i)-V(0)=0\), \(f(x_i)=0\), \(f'(x_i)<0\), lemma 1, lemma 2 and lemma 3, we have

  1. (a).

    \(\exists x_k\in (0,x_i), x_j\in (x_i,+\infty ), f(x_k)=f(x_i)=f(x_j)=0\);

  2. (b).

    there exists minimum \(x_\textrm{I}\in (0,x_k)\), maximum \(x_\textrm{II}\in (x_k,x_i)\) and minimum \(x_\textrm{III}\in (x_i,x_j)\), \(f'(x_\textrm{I})=f'(x_\textrm{II})=f'(x_\textrm{III})=0\);

  3. (c).

    \(f'(x)\) monotone increases in \((0,x_\textrm{I})\).

So it is clear that

$$\begin{aligned} f(x_\textrm{I})=\int _0^{x_\textrm{I}}f'(x)dx>f'(0)x_\textrm{I}, \end{aligned}$$

let \(f'(0)\rightarrow 0^-\) and we have \(f(x_\textrm{I})\rightarrow 0^-\).

Considering \(f(x_\textrm{I})x_k<\int _0^{x_k}f(x)dx<0\), we have \(\int _0^{x_k}f(x)dx\rightarrow 0^-\) and \(\int _{x_k}^{x_i}f(x)dx=-\int _0^{x_k}f(x)dx\rightarrow 0^+\). So it can be derived that \(f(x)\rightarrow 0^-\) for \(\forall x\in (0,x_k)\) and \(f(x)\rightarrow 0^+\) for \(\forall x\in (x_k,x_i)\).

From lemma 2, it can be derived that

$$\begin{aligned} \lim \limits _{f'(0)\rightarrow 0^-}x_i=\lim \limits _{f'(0)\rightarrow 0^-}x_k=0. \end{aligned}$$
(B8)

Assume that \(V(x)=ax^2(x^2-x_i^2)^2+bx^4(x^2-x_i^2)^3+cx^6(x^2-x_i^2)^4+o(x^7)\), and \(f(x)=V'(x)\), which is

$$\begin{aligned} f(x)= & {} 2ax_i^4x-4(2ax_i^2+bx_i^6)x^3\nonumber \\{} & {} +6(a+3bx_i^4+cx_i^8)x^5+o(x^7), \end{aligned}$$
(B9)

and let Eq. (B9) be the Taylor series of the restoring force, so that \(C_1(\alpha ,\beta ,\gamma )=2ax_i^4\), \(C_3(\alpha ,\beta ,\gamma )=-4(2ax_i^2+bx_i^6)\) and \(C_5(\alpha ,\beta ,\gamma )=6(a+3bx_i^4+cx_i^8)\), where \(x_i=x_i(\alpha ,\beta ,\gamma )\) and \(a<0\). Let \(x_i\rightarrow 0\) and we can obtain \(\lim \limits _{C_1\rightarrow 0}C_3(\alpha ,\beta ,\gamma )=0\) and \(\lim \limits _{C_1\rightarrow 0}C_5(\alpha ,\beta ,\gamma )=6a<0\).

Therefore, we have \(\partial {\mathcal {E}}_\pm ^1\cap {\mathcal {G}}=\textrm{L}_3\), and \(\partial \textrm{B}_7=\textrm{L}_2\cup \textrm{L}_3\cup \textrm{P}\).

Structural stability of Hamilton system with heteroclinic orbits

Without loss of generality, a 2-dimensional Hamilton system is considered, whose Hamilton function can be written in the following form

$$\begin{aligned} H(x,y)=\sum \limits _{i=1}^{\infty }\sum \limits _{j=1}^{\infty }a_{i,j}x^iy^j. \end{aligned}$$
(C1)

two examples are given to illustrate the condition of heteroclinic bifurcation of 2-dimensional Hamilton system, which is shown in theorem 1.

Example 1

Let \(a_{2,0}=1, a_{1,1}=a, a_{1,2}=b, a_{2,3}=-1, a,b\in {\mathbb {R}}\) and \(a_{i,j}\equiv 0\)(else), the Hamilton function is \(H(x,y,\varvec{p})=x^2+axy+bxy^2-x^2y^3\), where \(\varvec{p}=(a,b)^\textrm{T}\), which leads to the following Hamilton system

$$\begin{aligned} {\left\{ \begin{array}{ll} x'=ax+2bxy-3x^2y^2, \\ y'=-2x-ay-by^2+2xy^3. \end{array}\right. } \end{aligned}$$
(C2)

Three saddles \(\textrm{A}(0,0)\), \(\textrm{B}(0,-\frac{a}{b})\) and \(C(x_c(\varvec{p}),y_c(\varvec{p}))\) can be found. When \(\varvec{p}=(1,-1)^\textrm{T}\), we have \(H\vert _\textrm{A}=H\vert _\textrm{B}=H\vert _\textrm{C}=0\), thus three heteroclinic orbits can be found, as shown in Fig. 18b: \(\varGamma _1\) connecting \(\textrm{A}(0,0)\) and \(\textrm{B}(0,1)\); \(\varGamma _2\) connecting \(\textrm{B}(0,1)\) and \(\textrm{C}(-\frac{1}{3},1)\); \(\varGamma _3\) connecting \(\textrm{A}(0,0)\) and \(\textrm{C}(-\frac{1}{3},1)\). Calculation shows that

$$\begin{aligned}&\frac{\partial H}{\partial a}\vert _B-\frac{\partial H}{\partial a}\vert _A=0,\\&\frac{\partial H}{\partial b}\vert _B-\frac{\partial H}{\partial b}\vert _A=0,\\&\frac{\partial H}{\partial a}\vert _C-\frac{\partial H}{\partial a}\vert _B=x_c(\varvec{p})y_c(\varvec{p})\ne 0,\\&\frac{\partial H}{\partial b}\vert _C-\frac{\partial H}{\partial b}\vert _B=x_c(\varvec{p})y_c^2(\varvec{p})\ne 0, \\&\frac{\partial H}{\partial a}\vert _C-\frac{\partial H}{\partial a}\vert _A=x_c(\varvec{p})y_c(\varvec{p})\ne 0,\\&\frac{\partial H}{\partial b}\vert _C-\frac{\partial H}{\partial b}\vert _A=x_c(\varvec{p})y_c^2(\varvec{p})\ne 0, \end{aligned}$$

which means heteroclinic orbit \(\varGamma _1\) is structurally stable, but \(\varGamma _2\) and \(\varGamma _3\) are structurally unstable. The neighborhood systems are shown in Fig. 18a and c. Heteroclinic orbit \(\varGamma _2\) splits into orbits \(\varGamma _{1,0}\cup \varGamma _{1,1}\) or \(\varGamma _{2,0}\cup \varGamma _{2,1}\), while heteroclinic orbit \(\varGamma _3\) splits into orbits \(\varGamma _{1,0}\cup \varGamma _{1,2}\) or \(\varGamma _{2,0}\cup \varGamma _{2,2}\).

Example 2

Consider the Hamilton function \(H(x,y,\varvec{p})=\frac{1}{2}y^2-(x-a)^2(x-b)^2(x^2+cx+q)\), where \(\varvec{p}=(a,b,c,q)^\textrm{T}\), which leads to the following Hamilton system

$$\begin{aligned} {\left\{ \begin{array}{ll} x'=y, \\ y'=2(x-a)(x-b)(2x-a-b)(x^2+cx+q)\\ \qquad +(x-a)^2(x-b)^2(2x+c). \end{array}\right. } \end{aligned}$$
(C3)

Three saddles \(\textrm{A}(a,0)\), \(\textrm{B}(b,0)\) and \(C(x_c(\varvec{p}),0)\) can be found. When \(\varvec{p}=(\frac{1}{2},-1,-4,4)^\textrm{T}\), we have \(H\vert _\textrm{A}=H\vert _\textrm{B}=H\vert _\textrm{C}=0\), and two heteroclinic orbits can be found, as shown in Fig. 19b: \(\varGamma _1\) connecting \(\textrm{A}(\frac{1}{2},0)\) and \(\textrm{B}(-1,0)\); \(\varGamma _2\) connecting \(\textrm{A}(\frac{1}{2},0)\) and \(\textrm{C}(x_c(\varvec{p}),0)\). Calculation shows that

$$\begin{aligned}&\frac{\partial H}{\partial p_i}\vert _A-\frac{\partial H}{\partial p_i}\vert _B=0\ (p_i=a,b,c,q), \\&\frac{\partial H}{\partial c}\vert _C-\frac{\partial H}{\partial c}\vert _A=-x_c(\varvec{p})(x_c(\varvec{p})-a)^2(x_c(\varvec{p})-b)^2\ne 0,\\&\frac{\partial H}{\partial q}\vert _C-\frac{\partial H}{\partial q}\vert _A=-(x_c(\varvec{p})-a)^2(x_c(\varvec{p})-b)^2\ne 0, \end{aligned}$$

which means heteroclinic orbit \(\varGamma _1\) is structurally stable, but \(\varGamma _2\) is structurally unstable. The neighborhood systems are shown in Fig. 19a and c. Heteroclinic orbit \(\varGamma _2\) splits into orbits \(\varGamma _{1,0}\cup \varGamma _{1,1}\) or \(\varGamma _{2,0}\cup \varGamma _{2,1}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Cao, Q. The heteroclinic and codimension-4 bifurcations of a triple SD oscillator. Nonlinear Dyn 112, 5053–5075 (2024). https://doi.org/10.1007/s11071-024-09301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09301-8

Keywords

Navigation