Skip to main content
Log in

Command filtered adaptive fuzzy tracking control for uncertain stochastic nonlinear systems with event-triggered input

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addressed an issue regarding adaptive fuzzy backstepping for a class of stochastic nonlinear system with an event-triggered input. The presence of unknown nonlinear functions can be evaluated through fuzzy logic systems. With the aid of dynamic surface control, an adaptive tracking scheme is suggested, which can eliminate the “explosion of complexity.”An improved event-triggered co-design control scheme is proposed, whose threshold is a variable function combining tracking error, so that resources are saved. A tracking controller can guarantee that the signals of the closed-loop system are uniform. The tracking errors toward a small neighborhood of the origin. Simulations are conducted to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Turnip, A., Panggabean, J.: Hybrid controller design based magneto-rheological damper look up table for quarter car suspension. Int. J. Artif. Intell. 18(1), 193–206 (2020)

    Google Scholar 

  2. Liu, Y.J., Gong, M.Z., Tong, S.C., Chen, C.L.P., Li, D.J.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)

    Article  ADS  Google Scholar 

  3. Huang, J.S., Wang, W., Wen, C.Y., Li, G.Q.: Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering. IEEE Trans. Autom. Control 65(1), 318–324 (2020)

    Article  MathSciNet  Google Scholar 

  4. Boulkroune, A., Bouzeriba, A., Bouden, T.: Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 173, 606–614 (2016)

    Article  Google Scholar 

  5. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MathSciNet  Google Scholar 

  6. Li, C.D., Gao, J.L., Yi, J.Q., Zhang, G.Q.: Analysis and design of functionally weighted single-input-rule modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. 26(1), 56–71 (2018)

    Article  Google Scholar 

  7. Kim, B.S., Yoo, S.J.: Approximation-based adaptive control of uncertain non-linear pure-feedback systems with full state constraints. IET Control Theory Appl. 8(17), 2070–2081 (2014)

    Article  MathSciNet  Google Scholar 

  8. Lu, K., Liu, Z., Chen, C.L.P., Zhang, Y.: Event triggered neural control of nonlinear systems with rate dependent hysteresis input based on a new filter. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1270–1284 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  9. Deng, H., Krstic, M.: Output-feedback stochastic nonlinear stabilization. IEEE Trans. Autom. Control 44(2), 328–333 (1999)

    Article  MathSciNet  Google Scholar 

  10. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wu, Z.J., Xie, X.J., Zhang, S.Y.: Adaptive backstepping controller design using stochastic small-gain theorem. Automatica 43(4), 608–620 (2007)

    Article  MathSciNet  Google Scholar 

  12. Wu, Z.J., Xie, X., Shi, P.: Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching. Automatica 45(4), 997–1004 (2009)

    Article  MathSciNet  Google Scholar 

  13. Jin, X., Li, Y.X.: Adaptive fuzzy control of uncertain stochastic nonlinear systems with full state constraints-ScienceDirect. Inf. Sci. 57(4), 625–639 (2021)

    Article  Google Scholar 

  14. Li, Y.X., Tong, S.C.: A bound estimation approach for adaptive fuzzy asymptotic tracking of uncertain stochastic nonlinear systems. IEEE Trans. Cybern. 99, 1–10 (2020)

    Google Scholar 

  15. Tong, S.C., Li, Y.M., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016)

    Article  Google Scholar 

  16. Li, T., Li, Z., Wang, D., et al.: Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1188–1201 (2014)

    Article  MathSciNet  PubMed  Google Scholar 

  17. Zhi, L., Lai, G., Yun, Z., Xin, C., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2129–2140 (2014)

    Article  Google Scholar 

  18. Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2013)

    Article  ADS  Google Scholar 

  19. Liu, Y.J., Lu, S., Tong, S.: Neural network controller design for an uncertain robot with time-varying output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1–9 (2016)

    Google Scholar 

  20. Tong, S., Min, X., Li, Y.: Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Trans. Cybern. 50(9), 3903–3913 (2020)

    Article  PubMed  Google Scholar 

  21. Wang, F., Chen, B., Lin, C., et al.: Distributed adaptive neural control for stochastic nonlinear multiagent systems. IEEE Trans. Cybern. 47(7), 1795–1803 (2016)

    Article  Google Scholar 

  22. Tong, S.C., Li, Y.M.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Article  Google Scholar 

  23. Li, H., Lu, B., Qi, Z., et al.: Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2185–2197 (2017)

    Article  Google Scholar 

  24. Chen, C.L.P., Liu, Y., Wen, G.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2013)

    Article  PubMed  Google Scholar 

  25. Li, Y.X.: Barrier Lyapunov function-based adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients. Automatica 121(9), 109181 (2020)

    Article  MathSciNet  Google Scholar 

  26. Heemels, W., Donkers, M.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control. 49(3), 698–711 (2013)

    MathSciNet  Google Scholar 

  27. Liu, T., Jiang, Z.P.: Event-based control of nonlinear systems with partial state and output feedback. Automatica 53, 10–22 (2015)

    Article  MathSciNet  Google Scholar 

  28. Liu, C.G., Liu, X.P., Wang, H.Q., Zhou, Y.C., Lu, S.Y., Xu, B.: Event triggered adaptive tracking control for uncertain nonlinear systems based on a new funnel function. ISA Trans. 99(5), 130–138 (2020)

    Article  PubMed  Google Scholar 

  29. Hu, S., Yue, D., Han, Q.L., Xie, X., Chen, X., Dou, C.: Observer-based event-triggered control for networked linear systems subject to denial of-service attacks. IEEE Trans. Cybern. 50(5), 1952–1964 (2019)

    Article  PubMed  Google Scholar 

  30. Luo, Y.P., Xiao, X., Cao, J.D., Li, A.P., Lin, G.H.: Event-triggered guaranteed cost consensus control for second-order multi-agent systems based on observers. Inf. Sci. 546, 283–297 (2021)

    Article  MathSciNet  Google Scholar 

  31. Zhang, X.M., Han, Q.L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybern. 46(12), 2745–2757 (2016)

    Article  PubMed  Google Scholar 

  32. Liang, H., Guo, X., Pan, Y., Huang, T.: Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced order observers. IEEE Trans. Fuzzy Syst. 29(6), 1601–1614 (2021)

    Article  Google Scholar 

  33. Yan, Y., Yu, S., Sun, C.: Quantization-based event-triggered sliding mode tracking control of mechanical systems. Inf. Sci. 523, 296–306 (2020)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Z., Liang, H., Wu, C., Ahn, C.K.: Adaptive event-triggered out put feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Trans. Fuzzy Syst. 27(9), 1793–1806 (2019)

    Article  Google Scholar 

  35. Adaldo, A., Alderisio, F., Liuzza, D. , Shi, G.D.: Event-triggered pinning control of complex networks with switching topologies. In: Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA. pp. 2783-2788(2014)

  36. Li, Y.X., Yang, G.H.: Model-based adaptive event-triggered control of strict-feedback nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1033–1045 (2017)

    Article  PubMed  Google Scholar 

  37. Li, Y., Yang, G.: Event-triggered adaptive backstepping control for para metric strict-feedback nonlinear systems. Int. J. Robust Nonlinear Control 28(3), 976–1000 (2018)

    Article  Google Scholar 

  38. Wang, M., Wang, Z.D., Sheng, Y.W.G.: Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear systems. IEEE Trans. Cybern. 50(7), 2946–2958 (2020)

    Article  PubMed  Google Scholar 

  39. Xing, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    Article  MathSciNet  Google Scholar 

  40. Wang, L.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

  41. Chen, W., Jiao, L., Jing, L., Li, R.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 939–950 (2009)

Download references

Acknowledgements

This work received funding from the Scientific Research Fund of Liaoning Provincial Education Department of China (Grant No. 2019LNQN05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Gao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The design process is given as follows.

Step 1: According to (15), its derivative is

$$\begin{aligned} \text {d}z_{1}= & {} \left( g_{1}x_{2}+f_{1}-\dot{y}_{d}\right) \text {d}t+\varphi _{1}^{T}\text {d}\omega \nonumber \\= & {} \left( g_{1}\left( z_{2}+\eta _{2}+\alpha _{1}\right) +f_{1}-\dot{y} _{d}\right) \text {d}t+\varphi _{1}^{T}\text {d}\omega \nonumber \\= & {} \left( g_{1}\left( z_{2}+\eta _{2}+\alpha _{1}\right) +\delta _{1}+\theta _{1}^{*}\xi _{1}(x_{1})-\dot{y}_{d}\right) \text {d}t \nonumber \\{} & {} +\varphi _{1}^{T}\text {d}\omega \end{aligned}$$
(41)

We choose a Lyapunov function,

$$\begin{aligned} V_{1}=\frac{1}{4\underline{g}_{1}}z_{1}^{4}+\frac{1}{2\gamma _{1}}\tilde{ \omega }_{1}^{T}\tilde{\omega }_{1}+\frac{1}{2a_{1}}\tilde{\varepsilon }_{1}^{T} \tilde{\varepsilon }_{1}+\frac{1}{2b_{1}}\tilde{\epsilon }_{1}^{T}\tilde{ \epsilon }_{1}\nonumber \\ \end{aligned}$$
(42)

with parameters \(\gamma _{1}>0,a_{1}>0\), and \(b_{1}>0\). \(\tilde{\omega }_{1}\) is the estimation error and \(\omega _{1}\) is the estimations of \(\omega _{1}^{*}\) and \(\tilde{\omega }_{1}=\omega _{1}^{*}-\omega _{1} \).

According to (23) and (41),

$$\begin{aligned} LV_{1}\le & {} \frac{1}{\underline{g}_{1}}z_{1}^{3}\left( g_{1}(z_{2}+\eta _{2}+\alpha _{1})-\overset{\cdot }{y}_{d}\right) +\omega _{1}^{*}z_{1}^{3}\xi _{1}(x_{1}) \nonumber \\{} & {} +\varepsilon _{1}^{*}z_{1}^{3}+\frac{3}{2\underline{g}_{1}} z_{1}^{2}\left\| \varphi _{1}(x_{1})\right\| ^{2}+\frac{1}{\gamma _{1}} \tilde{\omega }_{1}^{T}\overset{.}{\tilde{\omega }}_{1} \nonumber \\{} & {} +\frac{1}{a_{1}}\tilde{\varepsilon }_{1}^{T}\overset{.}{\tilde{\varepsilon }} _{1}+\frac{1}{b_{1}}\tilde{\epsilon }_{1}^{T}\overset{.}{\tilde{\epsilon }}_{1} \end{aligned}$$
(43)

Using Young’s inequality, we get

$$\begin{aligned}{} & {} \frac{3}{2\underline{g}_{1}}z_{1}^{2}\left\| \varphi _{1}(x_{1})\right\| ^{2}\le \frac{3}{4}l_{1}^{2}+\frac{3}{4\underline{g} _{1}^{2}l_{1}^{2}}z_{1}^{4}\left\| \varphi _{1}(x_{1})\right\| ^{4} \end{aligned}$$
(44)
$$\begin{aligned}{} & {} \frac{g_{1}}{\underline{g}_{1}}z_{1}^{3}\eta _{2}\le \frac{1}{2}\frac{ g_{1}^{2}}{\underline{g}_{1}^{2}}z_{1}^{6}+\frac{1}{2}\eta _{2}^{2} \end{aligned}$$
(45)
$$\begin{aligned}{} & {} z_{1}^{3}z_{2}\le \frac{3}{4}z_{1}^{4}+\frac{1}{4}z_{2}^{4} \end{aligned}$$
(46)

Substituting (44)–(46) in (43) yields

$$\begin{aligned} LV_{1}\le & {} \frac{1}{\underline{g}_{1}}z_{1}^{3}\left( g_{1}\alpha _{1}+ \frac{3}{4\underline{g}_{1}l_{1}^{2}}z_{1}\left\| \varphi _{1}(x_{1})\right\| ^{4}-\overset{\cdot }{y}_{d}\right) \nonumber \\{} & {} +\frac{1}{\underline{g}_{1}}z_{1}^{3}\left( \frac{3}{4}g_{1}z_{1}+\frac{1}{ 2}\frac{g_{1}^{2}}{\underline{g}_{1}}z_{1}^{3}\right) +\frac{1}{4}\frac{g_{1} }{\underline{g}_{1}}z_{2}^{4} \nonumber \\{} & {} +\omega _{1}z_{1}^{3}\xi _{1}(x_{1})+\frac{1}{\gamma _{1}}\tilde{\omega } _{1}^{T}(\gamma _{1}z_{1}^{3}\xi _{1}(x_{1})-\dot{\omega }_{1}) \nonumber \\{} & {} +\frac{1}{a_{1}}\tilde{\varepsilon }_{1}^{T}(a_{1}z_{1}^{3}-\dot{\varepsilon }_{1})+\varepsilon _{1}z_{1}^{3}+\frac{3}{4}l_{1}^{2} \nonumber \\{} & {} +\frac{1}{2}\eta _{2}^{2}-\frac{1}{b_{1}}\tilde{\epsilon }_{1}^{T}\dot{ \epsilon }_{1} \end{aligned}$$
(47)

where \(v_{1}^{T}=\left[ \left\| \varphi _{1}(x_{1})\right\| ^{4}/ \underline{g}_{1}^{2}l_{1}^{2},-1/\underline{g}_{1},g_{1}/\underline{g} _{1},g_{1}^{2}/\underline{g}_{1}^{2}\right] \) and \(S_{1}^{T}=\left[ 3z_{1}/4, \overset{\cdot }{y}_{d},3z_{1}/4,z_{1}^{3}/2\right] .\) Then, we can write

$$\begin{aligned} LV_{1}\le & {} \frac{g_{1}}{\underline{g}_{1}}z_{1}^{3}\alpha _{1}+z_{1}^{3}v_{1}^{T}S_{1}+\omega _{1}z_{1}^{3}\xi _{1}(x_{1})+\varepsilon _{1}z_{1}^{3} \nonumber \\{} & {} +\frac{1}{2}\eta _{2}^{2}+\frac{1}{4}\frac{g_{1}}{\underline{g}_{1}} z_{2}^{4}+\frac{3}{4}l_{1}^{2}+\frac{1}{a_{1}}\tilde{\varepsilon } _{1}^{T}(a_{1}z_{1}^{3}-\dot{\varepsilon }_{1}) \nonumber \\{} & {} +\frac{1}{\gamma _{1}}\tilde{\omega }_{1}^{T}(\gamma _{1}z_{1}^{3}\xi _{1}(x_{1})-\dot{\omega }_{1})-\frac{1}{b_{1}}\tilde{\epsilon }_{1}^{T}\dot{ \epsilon }_{1} \end{aligned}$$
(48)

Using (17), we obtain

$$\begin{aligned} LV_{1}\le & {} \frac{g_{1}}{\underline{g}_{1}}z_{1}^{3}\alpha _{1}+z_{1}^{3}\epsilon _{1}^{*}\tau _{1}+\frac{1}{\gamma _{1}}\tilde{ \omega }_{1}^{T}(\gamma _{1}z_{1}^{3}\xi _{1}(x_{1})-\dot{\omega }_{1}) \nonumber \\{} & {} +\frac{1}{a_{1}}\tilde{\varepsilon }_{1}^{T}(a_{1}z_{1}^{3}-\dot{\varepsilon }_{1})+\rho _{1}\epsilon _{1}^{*}+\frac{3}{4}l_{1}^{2}+z_{1}^{3}\bar{ \alpha }_{1} \nonumber \\{} & {} -z_{1}^{3}\bar{\alpha }_{1}+\frac{1}{2}\eta _{2}^{2}+\frac{1}{4}\frac{g_{1} }{\underline{g}_{1}}z_{2}^{4}+\omega _{1}z_{1}^{3}\xi _{1}(x_{1}) \nonumber \\{} & {} +\varepsilon _{1}z_{1}^{3}-\frac{1}{b_{1}}\tilde{\epsilon }_{1}^{T}\dot{ \epsilon }_{1} \end{aligned}$$
(49)

where \(\bar{\alpha }_{1}=-c_{1}z_{1}+\epsilon _{1}\tau _{1}+\omega _{1}\xi _{1}(x_{1})+\varepsilon _{1}, c_{1}>0,\) and we get

$$\begin{aligned} LV_{1}\le & {} -c_{1}z_{1}^{4}+\frac{g_{1}}{\underline{g}_{1}}z_{1}^{3}\alpha _{1}+\frac{1}{\gamma _{1}}\tilde{\omega }_{1}^{T}(\gamma _{1}z_{1}^{3}\xi _{1}(x_{1})-\dot{\omega }_{1}) \nonumber \\{} & {} +\frac{1}{a_{1}}\tilde{\varepsilon }_{1}^{T}(a_{1}z_{1}^{3}-\dot{\varepsilon }_{1})+\frac{1}{b_{1}}\tilde{\epsilon }_{1}^{T}(b_{1}z_{1}^{3}\tau _{1}-\dot{ \epsilon }_{1}) \nonumber \\{} & {} +\rho _{1}\epsilon _{1}^{*}+\frac{3}{4}l_{1}^{2}+z_{1}^{3}\bar{\alpha } _{1}+\frac{1}{2}\eta _{2}^{2}+\frac{1}{4}\frac{g_{1}}{\underline{g}_{1}} z_{2}^{4} \end{aligned}$$
(50)

We design the first virtual control input \(\alpha _{1}\) and the first turning function as

$$\begin{aligned}{} & {} \alpha _{1}=-\frac{z_{1}^{3}\bar{\alpha }_{1}^{2}}{\sqrt{z_{1}^{6}\bar{\alpha } _{1}^{2}+\rho _{1}}} \end{aligned}$$
(51)
$$\begin{aligned}{} & {} \dot{\omega }_{1}=\gamma _{1}z_{1}^{3}\xi _{1}(x_{1})-m_{1}\omega _{1} \end{aligned}$$
(52)
$$\begin{aligned}{} & {} \dot{\varepsilon }_{1}=a_{1}z_{1}^{3}-n_{1}\varepsilon _{1} \end{aligned}$$
(53)
$$\begin{aligned} \dot{\epsilon }_{1}=b_{1}z_{1}^{3}\tau _{1}-h_{1}\epsilon _{1} \end{aligned}$$
(54)

with parameters \(m_{1}>0,n_{1}>0\), and \(h_{1}>0\).

From (51),

$$\begin{aligned} \frac{g_{1}}{\underline{g}_{1}}z_{1}^{3}\alpha _{1}+z_{1}^{3}\bar{\alpha } _{1}\le \rho _{1} \end{aligned}$$
(55)

Substituting (51)–(55) in (50), we can get

$$\begin{aligned} LV_{1}\le & {} -c_{1}z_{1}^{4}+\frac{m_{1}}{\gamma _{1}}\tilde{\omega } _{1}^{T}\omega _{1}+\frac{n_{1}}{a_{1}}\tilde{\varepsilon }\varepsilon _{1}+ \frac{h_{1}}{b_{1}}\tilde{\epsilon }_{1}^{T}\epsilon _{1} \nonumber \\{} & {} +\rho _{1}(1+\epsilon _{1}^{*})+\frac{3}{4}l_{1}^{2}+\frac{1}{2}\eta _{2}^{2}+\frac{1}{4}\frac{g_{1}}{\underline{g}_{1}}z_{2}^{4} \end{aligned}$$
(56)

To avoid continuously differentiating \(\alpha _{1}\), we describe the first-order filter as

$$\begin{aligned} \chi _{2}\overset{.}{d}_{2}+d_{2}=\alpha _{1},d_{2}(0)=\alpha _{1}(0) \end{aligned}$$
(57)

where \(\chi _{2}>0\) is a constant.

Using the definition \(\eta _{2}=d_{2}-\alpha _{1},\) we have

$$\begin{aligned} \dot{\eta }_{2}=\overset{.}{d}_{2}-\dot{\alpha }_{1}=-\frac{\eta _{2}}{\chi _{2}}+M_{2}(\cdot ) \end{aligned}$$
(58)

where \(M_{2}(\cdot )\) is a continuous function described as

$$\begin{aligned} M_{2}(\cdot )= & {} \frac{\partial \alpha _{1}}{\partial x_{1}} (g_{1}x_{2}+f_{1})+\sum _{i=0}^{1}\frac{\partial \alpha _{1}}{\partial y_{r}^{(i)}}y_{r}^{(i+1)} \nonumber \\{} & {} +\frac{\partial \alpha _{1}}{\partial \hat{\omega }_{1}}\dot{\omega }_{1}+ \frac{\partial \alpha _{1}}{\partial \hat{\varepsilon }_{1}}\dot{\varepsilon } _{1}+\frac{\partial \alpha _{1}}{\partial \hat{\epsilon }_{1}}\dot{\epsilon } _{1} \nonumber \\{} & {} +\frac{\partial \alpha _{1}}{\partial \hat{\theta }_{1}}\overset{.}{\hat{ \theta }}_{1}+\frac{1}{2}\frac{\partial ^{2}\alpha _{1}}{\partial x_{1}^{2}} \varphi _{1}^{T}\varphi _{1} \end{aligned}$$
(59)

Step i (\(i=2\), ..., \(n-1\))\( : \) According to (15), its derivative is

$$\begin{aligned} \text {d}z_{i}= & {} \left( g_{i}x_{i+1}+f_{i}-\dot{d}_{i}\right) \text {d}t+\varphi _{i}^{T}\text {d}\omega \nonumber \\= & {} \left( g_{i}\left( z_{i+1}+\eta _{i+1}+\alpha _{i}\right) +f_{i}-\dot{d} _{i}\right) \text {d}t+\varphi _{i}^{T}\text {d}\omega \nonumber \\= & {} \left( g_{i}\left( z_{i+1}+\eta _{i+1}+\alpha _{i}\right) +\delta _{i}\right) \text {d}t \nonumber \\{} & {} \left( +\theta _{i}^{*}\xi _{i}(x_{i})-\dot{d}_{i}\right) \text {d}t+\varphi _{i}^{T}\text {d}\omega \end{aligned}$$
(60)

Choose a Lyapunov function as

$$\begin{aligned} V_{i}= & {} V_{i-1}+\frac{1}{4\underline{g}_{i}}z_{i}^{4}+\frac{1}{2\gamma _{i}} \tilde{\omega }_{i}^{T}\tilde{\omega }_{i}+\frac{1}{2a_{i}}\tilde{\varepsilon } _{i}^{T}\tilde{\varepsilon }_{i} \nonumber \\{} & {} +\frac{1}{2b_{i}}\tilde{\epsilon }_{i}^{T}\tilde{\epsilon }_{i}+\frac{1}{2} \eta _{i}^{2} \end{aligned}$$
(61)

with parameters \(\gamma _{i}>0, a_{i}>0\), and \(b_{i}>0\). \(\tilde{\omega }_{i}\) is the estimation error and \(\omega _{i}\) is the estimations of \(\omega _{i}^{*} \tilde{\omega }_{i}=\omega _{i}^{*}-\omega _{i}\).

According to (23) and (60),

$$\begin{aligned} LV_{i}\le & {} LV_{i-1}+\frac{1}{\underline{g}_{i}}z_{i}^{3}\left( g_{i}(z_{i+1}+\eta _{i+1}+\alpha _{i})-\dot{d}_{i}\right) \nonumber \\{} & {} +\omega _{i}^{*}z_{i}^{3}\xi _{i}(x_{i})+\eta _{i}\dot{\eta }_{i}+\frac{ 1}{\gamma _{i}}\tilde{\omega }_{i}^{T}\overset{.}{\tilde{\omega }_{i}}+\frac{1 }{a_{i}}\tilde{\varepsilon }_{i}^{T}\overset{.}{\tilde{\varepsilon }}_{i} \nonumber \\{} & {} +\frac{3}{2\underline{g}_{i}}z_{i}^{2}\left\| \varphi _{i}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{i-1}}{\partial x_{j}}\varphi _{j}\right\| ^{2}+\varepsilon _{i}^{*}z_{i}^{3} \nonumber \\{} & {} +\frac{1}{b_{i}}\tilde{\epsilon }_{i}^{T}\overset{.}{\tilde{\epsilon }}_{i} \end{aligned}$$
(62)

Using Young’s inequality, we obtain

$$\begin{aligned}{} & {} \frac{3}{2\underline{g}_{i}}z_{i}^{2}\left\| \varphi _{i}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{i-1}}{\partial x_{j}}\varphi _{j}\right\| ^{2} \nonumber \\\le & {} \frac{3}{4}l_{i}^{2}+\frac{3}{4\underline{g}_{i}^{2}l_{i}^{2}} z_{i}^{4}\left\| \varphi _{i}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{i-1} }{\partial x_{j}}\varphi _{j}\right\| ^{4} \end{aligned}$$
(63)
$$\begin{aligned}{} & {} \frac{g_{i}}{\underline{g}_{i}}z_{i}^{3}\eta _{i+1}\le \frac{1}{2}\frac{ g_{i}^{2}}{\underline{g}_{i}^{2}}z_{i}^{6}+\frac{1}{2}\eta _{i+1}^{2} \end{aligned}$$
(64)
$$\begin{aligned}{} & {} \frac{g_{i}}{\underline{g}_{i}}z_{i}^{3}z_{i+1}\le \frac{3}{4}\frac{g_{i}}{ \underline{g}_{i}}z_{i}^{4}+\frac{1}{4}\frac{g_{i}}{\underline{g}_{i}} z_{i+1}^{4} \end{aligned}$$
(65)

Substituting (63)–(65) in (62) yields

$$\begin{aligned} LV_{i}\le & {} -\sum _{j=1}^{i-1}c_{j}z_{j}^{4}+\sum _{j=1}^{i-1}\frac{m_{j}}{ \gamma _{j}}\tilde{\omega }_{j}^{T}\omega _{j}+\sum _{j=1}^{i-1}\frac{n_{j}}{ a_{j}}\tilde{\varepsilon }_{j}^{T}\varepsilon _{j} \nonumber \\{} & {} +\sum _{j=1}^{i-1}\frac{h_{j}}{b_{j}}\tilde{\epsilon }_{j}^{T}\epsilon _{j}+\sum _{j=1}^{i-1}\rho _{j}(1+\epsilon _{j}^{*})+\frac{1}{4}\frac{ g_{i}}{\underline{g}_{i}}z_{i+1}^{4} \nonumber \\{} & {} +\frac{1}{\underline{g}_{i}}z_{i}^{3}\left( g_{i}\alpha _{i}-Ld_{i}+\frac{1 }{4}\frac{g_{i-1}\underline{g}_{i}}{\underline{g}_{i-1}}z_{i}\right) -\frac{1 }{b_{j}}\tilde{\epsilon }_{j}^{T}\dot{\epsilon }_{j} \nonumber \\{} & {} +\frac{1}{\underline{g}_{i}}z_{i}^{3}\left( \frac{3}{4\underline{g} _{i}l_{i}^{2}}z_{i}\left\| \varphi _{i}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{i-1}}{\partial x_{j}}\varphi _{j}\right\| ^{4}\right) \nonumber \\{} & {} +\frac{1}{\underline{g}_{i}}z_{i}^{3}\left( \frac{1}{2}\frac{g_{i}^{2}}{ \underline{g}_{i}}z_{i}^{3}+\frac{3}{4}g_{i}z_{i}\right) +\varepsilon _{i}z_{i}^{3}+\frac{1}{2}\eta _{i+1}^{2} \nonumber \\{} & {} +\frac{1}{a_{i}}\tilde{\varepsilon }_{i}^{T}(a_{i}z_{i}^{3}-\dot{\varepsilon }_{i})+\frac{1}{\gamma _{i}}\tilde{\omega }_{i}^{T}(\gamma _{i}z_{i}^{3}\xi _{i}(x_{i})-\dot{\omega }_{i}) \nonumber \\{} & {} +\sum _{j=1}^{i}\frac{3}{4}l_{j}^{2}+\omega _{i}z_{i}^{3}\xi _{i}(x_{i})+2(i-2)\iota +\eta _{i}\dot{\eta }_{i} \nonumber \\{} & {} +\sum _{j=2}^{i}\left( \frac{1}{2}-\frac{1}{\chi _{j}}+\frac{1}{2\iota } M_{j}^{2}(\cdot )\right) \eta _{j}^{2} \end{aligned}$$
(66)

where \(v_{i}^{T}=[\left\| \varphi _{i}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{i-1}}{\partial x_{j}}\varphi _{j}\right\| ^{4}/\underline{g} _{i}^{2}l_{i}^{2}\),\(-1/\underline{g}_{i}\), \(g_{i}/\underline{g}_{i}\), \(g_{i}^{2}/\underline{g}_{i}^{2}\), \(g_{i-1} \underline{g}_{i}/\underline{g}_{i-1}]\), and \(S_{i}^{T}=[3z_{1}/4\),\(Ld_{i}\), \(3z_{i}/4\),\(z_{i}^{3}/2\),\(z_{i}/4]\)

Then we can get

$$\begin{aligned} LV_{i}\le & {} -\sum _{j=1}^{i-1}c_{j}z_{j}^{4}+\sum _{j=1}^{i-1}\frac{m_{j}}{ \gamma _{j}}\tilde{\omega }_{j}^{T}\omega _{j}+\sum _{j=1}^{i-1}\frac{n_{j}}{ a_{j}}\tilde{\varepsilon }_{j}^{T}\varepsilon _{j} \nonumber \\{} & {} +\sum _{j=1}^{i-1}\frac{h_{j}}{b_{j}}\tilde{\epsilon }_{j}^{T}\epsilon _{j}+\sum _{j=1}^{i-1}\rho _{j}(1+\epsilon _{j}^{*})+\frac{g_{i}}{ \underline{g}_{i}}z_{i}^{3}\alpha _{i} \nonumber \\{} & {} +z_{i}^{3}v_{i}^{T}S_{i1}+\omega _{i}z_{i}^{3}\xi _{i}(x_{i})+\varepsilon _{i}z_{i}^{3}+\sum _{j=2}^{i+1}\frac{1}{2}\eta _{i}^{2} \nonumber \\{} & {} +\eta _{i}\dot{\eta }_{i}+2(i-2)\iota +\frac{1}{a_{i}}\tilde{\varepsilon } _{i}^{T}(a_{i}z_{i}^{3}-\dot{\varepsilon }_{i}) \nonumber \\{} & {} +\sum _{j=2}^{i-1}\left( -\frac{1}{\chi _{j}}+\frac{1}{2\iota } M_{j}^{2}(\cdot )\right) \eta _{j}^{2}+\frac{1}{4}\frac{g_{i}}{\underline{g} _{i}}z_{i+1}^{4} \nonumber \\{} & {} +\sum _{j=1}^{i}\frac{3}{4}l_{j}^{2}\frac{1}{\gamma _{i}}\tilde{\omega } _{i}^{T}(\gamma _{i}z_{i}^{3}\xi _{i}(x_{i})-\dot{\omega }_{i})-\frac{1}{b_{i} }\tilde{\epsilon }_{i}^{T}\dot{\epsilon }_{i}\nonumber \\ \end{aligned}$$
(67)

From (17),

$$\begin{aligned} LV_{i}\le & {} -\sum _{i=1}^{i-1}c_{i}z_{i}^{4}++\sum _{j=1}^{i-1}\frac{m_{j}}{ \gamma _{j}}\tilde{\omega }_{j}^{T}\omega _{j}+\sum _{j=1}^{i-1}\frac{n_{j}}{ a_{j}}\tilde{\varepsilon }_{j}^{T}\varepsilon _{j} \nonumber \\{} & {} +\sum _{j=1}^{i-1}\frac{h_{j}}{b_{j}}\tilde{\epsilon }_{j}^{T}\epsilon _{j}+\sum _{j=1}^{i-1}\rho _{j}(1+\epsilon _{j}^{*})+\sum _{j=1}^{i-1} \frac{3}{4}l_{j}^{2} \nonumber \\{} & {} +\varepsilon _{i}z_{i}^{3}+\frac{1}{b_{j}}\tilde{\epsilon } _{j}^{T}(b_{j}z_{j}^{3}\tau _{j}-\dot{\epsilon }_{j})+\eta _{i}\dot{\eta }_{i}+ \frac{1}{2}\eta _{i+1}^{2} \nonumber \\{} & {} +\frac{1}{\underline{g}_{i}}z_{i}^{3}g_{i}\alpha _{i}+\frac{1}{\gamma _{i}} \tilde{\omega }_{i}^{T}(\gamma _{i}z_{i}^{3}\xi _{i}(x_{i})-\dot{\omega }_{i}) \nonumber \\{} & {} +\frac{1}{a_{i}}\tilde{\varepsilon }_{i}^{T}(a_{i}z_{i}^{3}-\dot{\varepsilon }_{i})+\epsilon _{i}z_{i}^{3}\tau _{i}+\rho _{i}\epsilon _{i}^{*}+2(i-2)\iota \nonumber \\{} & {} +\sum _{j=2}^{i}\left( \frac{1}{2}-\frac{1}{\chi _{j}}+\frac{1}{2\iota } \bar{M}_{j}^{2}(\cdot )\right) \eta _{j}^{2}+\frac{1}{4}\frac{g_{i}}{ \underline{g}_{i}}z_{i+1}^{4} \nonumber \\{} & {} +z_{i}^{3}\bar{\alpha }_{i}-z_{i}^{3}\bar{\alpha }_{i}+\omega _{i}z_{i}^{3}\xi _{i}(x_{i}) \end{aligned}$$
(68)

where \(\bar{\alpha }_{i}=-c_{i}z_{i}+\epsilon _{i}\tau _{i}+\omega _{i}\xi _{i}(x_{i})+\varepsilon _{i}\), \(c_{i}>0,\) and \(M_{i}(\cdot )\) is defined as a continuous function,

$$\begin{aligned} M_{i}(\cdot )= & {} \sum _{j=1}^{i}\frac{\partial \alpha _{i}}{\partial x_{j}} (g_{j}x_{j+1}+f_{j})+\sum _{j=0}^{i}\frac{\partial \alpha _{i}}{\partial y_{r}^{(i)}}y_{r}^{(j+1)} \nonumber \\{} & {} +\sum _{i=0}^{i}\frac{\partial \alpha _{i}}{\partial \hat{\omega }_{i}}\dot{ \omega }_{i}+\sum _{i=0}^{i}\frac{\partial \alpha _{i}}{\partial \hat{ \varepsilon }_{i}}\dot{\varepsilon }_{i} \nonumber \\{} & {} +\sum _{i=0}^{i}\frac{\partial \alpha _{i}}{\partial \hat{\epsilon }_{i}} \dot{\epsilon }_{i}+\frac{\partial \alpha _{i}}{\partial \hat{\theta }}\overset{.}{\hat{\theta }}+\frac{1}{2}\sum _{j=1}^{i}\frac{\partial ^{2}\alpha _{1}}{ \partial x_{p}\partial x_{q}}\varphi _{p}^{T}\varphi _{q}\nonumber \\ \end{aligned}$$
(69)

Applying Young’s inequality again, we get

$$\begin{aligned} \eta _{i}M_{i}(\cdot )\le \frac{1}{2\iota }\eta _{i}^{2}M_{i}^{2}(\cdot )+2\iota \end{aligned}$$
(70)

where \(\iota \) is a positive constant.

Combining (68) with (70), we obtain

$$\begin{aligned} LV_{i}\le & {} -\sum _{i=1}^{i-1}c_{i}z_{i}^{4}+\sum _{j=1}^{i-1}\frac{m_{j}}{ \gamma _{j}}\tilde{\omega }_{j}^{T}\omega _{j}+\sum _{j=1}^{i-1}\frac{n_{j}}{ a_{j}}\tilde{\varepsilon }_{j}^{T}\varepsilon _{j} \nonumber \\{} & {} +\sum _{j=1}^{i-1}\frac{h_{j}}{b_{j}}\tilde{\epsilon }_{j}^{T}\epsilon _{j}+\sum _{j=1}^{i-1}\rho _{j}(1+\epsilon _{j}^{*})+z_{i}^{3}\bar{\alpha } _{i} \nonumber \\{} & {} +\sum _{j=1}^{i-1}\frac{3}{4}l_{j}^{2}+\frac{g_{i}}{\underline{g}_{i}} z_{i}^{3}\alpha _{i}+\frac{1}{\gamma _{i}}\tilde{\omega }_{i}^{T}(\gamma _{i}z_{i}^{3}\xi _{i}(x_{i})-\dot{\omega }_{i}) \nonumber \\{} & {} +\frac{1}{b_{j}}\tilde{\epsilon }_{j}^{T}(b_{j}z_{j}^{3}\tau _{j}-\dot{ \epsilon }_{j})+\frac{1}{a_{i}}\tilde{\varepsilon }_{i}^{T}(a_{i}z_{i}^{3}- \dot{\varepsilon }_{i}) \nonumber \\{} & {} +\omega _{i}z_{i}^{3}\xi _{i}(x_{i})+2(i-1)\iota +\frac{1}{4}\frac{g_{i}}{ \underline{g}_{i}}z_{i+1}^{4}+\frac{1}{2}\eta _{i+1}^{2} \nonumber \\{} & {} +\rho _{i}\epsilon _{i}^{*}+\sum _{j=2}^{i}\left( \frac{1}{2}-\frac{1}{ \chi _{j}}+\frac{1}{2\iota }M_{j}^{2}(\cdot )\right) \eta _{j}^{2} \end{aligned}$$
(71)

Virtual control law \(\alpha _{i}\) and adaptation laws are devised as

$$\begin{aligned}{} & {} \alpha _{i}=-\frac{z_{i}^{3}\bar{\alpha }_{i}^{2}}{\sqrt{z_{i}^{6}\bar{\alpha } _{i}^{2}+\rho _{i}}} \end{aligned}$$
(72)
$$\begin{aligned}{} & {} \dot{\omega }_{i}=\gamma _{i}z_{i}^{3}\xi _{i}(x_{i})-m_{i}\omega _{i} \end{aligned}$$
(73)
$$\begin{aligned}{} & {} \dot{\varepsilon }_{i}=a_{i}z_{i}^{3}-n_{i}\varepsilon _{i} \end{aligned}$$
(74)
$$\begin{aligned}{} & {} \dot{\epsilon }_{i}=b_{i}z_{i}^{3}\tau _{i}-h_{i}\epsilon _{i} \end{aligned}$$
(75)

with parameters \(m_{i}>0,n_{i}>0,h_{i}>0\).

From (72), we have the inequality

$$\begin{aligned} \frac{g_{i}}{\underline{g}_{i}}z_{i}^{3}\alpha _{i}+z_{i}^{3}\bar{\alpha } _{i}\le \rho _{i} \end{aligned}$$
(76)

Substituting (72)–(76) in (71) yields

$$\begin{aligned} LV_{i}\le & {} -\sum _{i=1}^{i}c_{i}z_{i}^{4}-\sum _{j=2}^{i}(\frac{1}{\chi _{j} }-\frac{1}{2\iota }M_{j}^{2}(\cdot )-\frac{1}{2})\eta _{j}^{2} \nonumber \\{} & {} +\sum _{j=1}^{i}\rho _{j}(1+\epsilon _{j}^{*})+\sum _{j=1}^{i}\frac{3}{4} l_{j}^{2}+2(i-1)\iota \nonumber \\{} & {} +\frac{1}{2}\eta _{i+1}^{2}+\frac{1}{4}\frac{g_{i}}{\underline{g}_{i}} z_{i+1}^{4}+\sum _{j=1}^{i}\frac{m_{j}}{2\gamma _{j}}\tilde{\omega } _{j}^{T}\omega _{j} \nonumber \\{} & {} +\sum _{j=1}^{i}\frac{n_{j}}{2a_{j}}\tilde{\varepsilon }_{j}^{T}\varepsilon _{j}+\sum _{j=1}^{i-1}\frac{h_{j}}{2b_{j}}\tilde{\epsilon }_{j}^{T}\epsilon _{j} \end{aligned}$$
(77)

To avoid continuously differentiating \(\alpha _{i}\), we describe the first-order filter as

$$\begin{aligned} \chi _{i+1}\overset{.}{d}_{i+1}+d_{i+1}=\alpha _{i},d_{i+1}(0)=\alpha _{i}(0) \end{aligned}$$
(78)

where \(\chi _{i+1}>0\) is a constant.

Because \(\eta _{i+1}=d_{i+1}-\alpha _{i},\) we have

$$\begin{aligned} \dot{\eta }_{i+1}=\overset{.}{d}_{i+1}-\dot{\alpha }_{i}=-\frac{\eta _{i+1}}{ \chi _{i+1}}+M_{i+1}(\cdot ) \end{aligned}$$
(79)

where \(M_{i+1}(\cdot )\) is defined as a continuous function,

$$\begin{aligned} M_{i+1}(\cdot )= & {} \sum _{j=1}^{i}\frac{\partial \alpha _{i}}{\partial x_{j}} (g_{j}x_{j+1}+f_{j})+\sum _{j=0}^{i}\frac{\partial \alpha _{i}}{\partial y_{r}^{(i)}}y_{r}^{(j+1)} \nonumber \\{} & {} +\sum _{i=1}^{i}\frac{\partial \alpha _{i}}{\partial \hat{\omega }_{i}}\dot{ \omega }_{i}+\sum _{i=1}^{i}\frac{\partial \alpha _{i}}{\partial \hat{ \varepsilon }_{i}}\dot{\varepsilon }_{i} \nonumber \\{} & {} +\sum _{i=1}^{i}\frac{\partial \alpha _{i}}{\partial \hat{\epsilon }_{i}} \dot{\epsilon }_{i}+\frac{1}{2}\sum _{j=1}^{i}\frac{\partial ^{2}\alpha _{1}}{ \partial x_{p}\partial x_{q}}\varphi _{p}^{T}\varphi _{q} \end{aligned}$$
(80)

Step n: According to (1) and (15), we obtain

$$\begin{aligned} V_{n}= & {} V_{n-1}+\frac{1}{4\underline{g}_{n}}z_{n}^{4}+\frac{1}{2\gamma _{n}} \tilde{\omega }_{n}^{T}\tilde{\omega }_{n}+\frac{1}{2a_{n}}\tilde{\varepsilon } _{n}^{T}\tilde{\varepsilon }_{n} \nonumber \\{} & {} +\frac{1}{2b_{n}}\tilde{\epsilon }_{n}^{T}\tilde{\epsilon }_{n}+\frac{1}{2} \eta _{n}^{2} \end{aligned}$$
(81)

with parameters \(\gamma _{n}>0,a_{n}>0\), and \(b_{n}>0\). \(\tilde{\omega }_{n}\) is the estimation error and \(\omega _{n}\) is the estimations of \(\omega _{n}^{*}\) and \(\tilde{\omega }_{n}=\omega _{n}^{*}-\omega _{n} \).

According to (14), (15), and (7)

$$\begin{aligned} LV_{n}= & {} LV_{n-1}+\frac{1}{\underline{g}_{n}}z_{n}^{3}\left( g_{n}u-Ld_{n}\right) \nonumber \\{} & {} +\frac{3}{2\underline{g}_{n}}z_{n}^{2}\left\| \varphi _{n}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{n-1}}{\partial x_{n-1}}\varphi _{n-1}\right\| ^{2} \nonumber \\{} & {} +\frac{1}{\gamma _{n}}\tilde{\omega }_{n}^{T}\overset{.}{\tilde{\omega }_{n}} +\frac{1}{a_{n}}\tilde{\varepsilon }_{n}^{T}\overset{.}{\tilde{\varepsilon }} _{n}+\frac{1}{b_{n}}\tilde{\epsilon }_{n}^{T}\overset{.}{\tilde{\epsilon }}_{n} \nonumber \\{} & {} +\eta _{n}\dot{\eta }_{n}+\varepsilon _{n}^{*}z_{n}^{3}+\omega _{n}^{*}z_{n}^{3}\xi _{n}(x_{n}) \end{aligned}$$
(82)

Similar to Step i, virtual control law can be designed as

$$\begin{aligned} u=\alpha _{n}=-\frac{z_{n}^{3}\bar{\alpha }_{n}^{2}}{\sqrt{z_{n}^{6}\bar{ \alpha }_{n}^{2}+\rho _{n}}} \end{aligned}$$
(83)

where \(\bar{\alpha }_{n}=-c_{n}z_{n}+\epsilon _{n}\tau _{n}+\omega _{n}\xi _{n}(x_{n})+\varepsilon _{n}.\)

An improved event-triggered strategy is obtained by noting the existence of the tracking error term. Therefore, the continuous controller can be devised as

$$\begin{aligned}{} & {} g(t)=\alpha _{n}-\bar{\upsilon }\tanh \left( \frac{z^{3}\bar{\upsilon }}{\mu } \right) \end{aligned}$$
(84)
$$\begin{aligned}{} & {} \dot{\omega }_{n}=\gamma _{n}z_{n}^{3}\xi _{n}(x_{n})-m_{n}\omega _{n} \end{aligned}$$
(85)
$$\begin{aligned}{} & {} \dot{\varepsilon }_{n}=a_{n}z_{n}^{3}-n_{n}\varepsilon _{n} \end{aligned}$$
(86)
$$\begin{aligned}{} & {} \dot{\epsilon }_{n}=b_{n}z_{n}^{3}\tau _{n}-h_{n}\epsilon _{n} \end{aligned}$$
(87)

where \(m_{n}, n_{n}, h_{n}, \bar{\upsilon }\), and \(\mu \) are positive parameters, and \(\upsilon ^{*}\) is a threshold that can be expressed as

$$\begin{aligned} \upsilon ^{*}=\upsilon +\frac{p_{1}}{\left| z_{1}\right| +p_{2}}, \end{aligned}$$
(88)

where \(\upsilon ^{*}<\upsilon \left( \bar{\upsilon }>\upsilon \right) \), \( p_{1}>0\), and \(p_{2}>0\). The triggered event is described as

$$\begin{aligned} u\left( t\right)= & {} g\left( t_{k}\right) ,\ \forall t\in \left[ t_{k},t_{k+1}\right) , \end{aligned}$$
(89)
$$\begin{aligned} t_{k+1}= & {} \inf \left\{ t\in R|\,\left| e(t)\right| \ge \upsilon ^{*}\right\} ,t_{1}=0, \end{aligned}$$
(90)

where \(e\left( t\right) =g\left( t\right) -u\left( t\right) \) is measurement error between the continuous controller and the actual controller. \(t_{k},\ k\in z^{+}\), is the controller update time, i.e., whenever (90) is triggered, the time is updated to \(t_{k+1}\), and the input signal \(u\left( t_{k+1}\right) \) is used in the system. Within time \(t\in \left[ t_{k},t_{k+1}\right) \), the signal \(g\left( t_{k}\right) \) remains constant.

Supposing that the t is over a time interval \(\left[ t_{k},t_{k+1}\right) \), combined with (90), we get \(\left| g\left( t\right) -u\left( t\right) \right| \le \upsilon \). Thus, it exists a continuous time-varying parameter \(\varpi \left( t\right) \) also \(\varpi \left( t_{k}\right) =0,\ \varpi \left( t_{k+1}\right) =\pm 1\) and \( \left| \varpi \left( t\right) \right| \le 1\). In addition, \(g\left( t\right) =u\left( t\right) +\varpi \left( t\right) \upsilon \). Based on the above, we can get

$$\begin{aligned} LV_{n}= & {} LV_{n-1}+\frac{3}{2\underline{g}_{n}}z_{n}^{2}\left\| \varphi _{n}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{n-1}}{\partial x_{n-1}}\varphi _{n-1}\right\| ^{2} \nonumber \\{} & {} +\frac{1}{\underline{g}_{n}}z_{n}^{3}g_{n}\left( \alpha _{n}-\bar{\upsilon } \tanh \left( \frac{z^{3}\bar{\upsilon }}{\mu }\right) -\varpi \left( t\right) \upsilon \right) \nonumber \\{} & {} +\omega _{n}^{*}z_{n}^{3}\xi _{n}(x_{n})+\frac{1}{\gamma _{n}}\tilde{ \omega }_{n}^{T}\overset{.}{\tilde{\omega }_{n}}-\frac{1}{\underline{g}_{n}} z_{n}^{3}Ld_{n} \nonumber \\{} & {} +\frac{1}{b_{n}}\tilde{\epsilon }_{n}\overset{.}{\tilde{\epsilon }}_{n}+\eta _{n}\dot{\eta }_{n}+\varepsilon _{n}^{*}z_{n}^{3}+\frac{1}{a_{n}}\tilde{ \varepsilon }_{n}^{T}\overset{.}{\tilde{\varepsilon }}_{n} \nonumber \\\le & {} LV_{n-1}+\frac{1}{\underline{g}_{n}}z_{n}^{3}\left( g_{n}\alpha _{n}- \dot{d}_{n}\right) +\omega _{n}^{*}z_{n}^{3}\xi _{n}(x_{n}) \nonumber \\{} & {} +\frac{3}{2\underline{g}_{n}}z_{n}^{2}\left\| \varphi _{n}-\sum _{j=1}^{i-1}\frac{\partial \alpha _{n-1}}{\partial x_{n-1}}\varphi _{n-1}\right\| ^{2} \nonumber \\{} & {} +\frac{g_{n}}{\underline{g}_{n}}0.2785\mu \end{aligned}$$
(91)

where

$$\begin{aligned}{} & {} z_{n}^{3}\left( -\bar{\upsilon }\tanh \left( \frac{z^{3}\bar{\upsilon }}{\mu }\right) -\varpi \left( t\right) \upsilon \right) \nonumber \\\le & {} \left( \left| z_{n}^{3}\upsilon \right| -z_{n}^{3}\bar{ \upsilon }\tanh \left( \frac{z^{3}\bar{\upsilon }}{\mu }\right) \right) \nonumber \\\le & {} 0.2785\mu \end{aligned}$$
(92)

where \(v_{n}^{T}=[\left\| \varphi _{n}-\sum _{j=1}^{n-1}\frac{\partial \alpha _{i-1}}{\partial x_{j}}\varphi _{j}\right\| ^{4}/g_{n}^{2}l_{n}^{2} \), \(g_{n}/\underline{g}_{n}\),\(-1/g_{n}\),\(g_{n-1}g_{n}/\underline{g}_{n-1}]\) and \(S_{n}^{T}=[3z_{n}/4\), \(0.2785\mu \),\(Ld_{n}\),\(z_{n}/4]\).

Substituting (83)–(87) in (82) yields

$$\begin{aligned} LV_{n}\le & {} -\sum _{i=1}^{n}c_{i}z_{i}^{4}-\sum _{i=2}^{n}(\frac{1}{\chi _{i} }-\frac{1}{2\iota }\bar{M}_{i}^{2}(\cdot )-\frac{1}{2})\eta _{i}^{2} \nonumber \\{} & {} +\sum _{i=1}^{n}\rho _{i}(1+\epsilon _{i}^{*})+\frac{3}{4} \sum _{i=1}^{n}l_{i}^{2} \nonumber \\{} & {} +2(n-1)\iota +\sum _{j=1}^{n-1}\frac{h_{j}}{2b_{j}}\tilde{\epsilon } _{j}^{T}\epsilon _{j} \nonumber \\{} & {} +\sum _{j=1}^{n-1}\frac{m_{j}}{2\gamma _{j}}\tilde{\omega }_{j}^{T}\omega _{j}+\sum _{j=1}^{n-1}\frac{n_{j}}{2a_{j}}\tilde{\varepsilon } _{j}^{T}\varepsilon _{j} \end{aligned}$$
(93)

where \(\left| M_{i}(\cdot )\right| \le \bar{M}_{i}, i=2,\ldots ,n, \) where \(\bar{M}_{i}\) are positive constants.

Exploiting Young’s inequality, we obtain

$$\begin{aligned}{} & {} \frac{m_{n}}{\gamma _{n}}\tilde{\omega }_{n}^{T}\omega _{n}\le -\frac{m_{n}}{ 2\gamma _{n}}\tilde{\omega }_{n}^{T}\tilde{\omega }_{n}+\frac{m_{n}}{2\gamma _{n}}\tilde{\omega }_{n}^{*T}\omega _{n}^{*} \end{aligned}$$
(94)
$$\begin{aligned}{} & {} \frac{n_{n}}{a_{n}}\tilde{\varepsilon }_{n}^{T}\varepsilon _{n}\le -\frac{ n_{n}}{2a_{n}}\tilde{\varepsilon }_{n}^{T}\tilde{\varepsilon }_{n}+\frac{n_{n} }{2a_{n}}\tilde{\varepsilon }_{n}^{T}\varepsilon _{n}^{*} \end{aligned}$$
(95)
$$\begin{aligned}{} & {} \frac{h_{n}}{b_{n}}\tilde{\epsilon }_{n}^{T}\epsilon _{n}\le -\frac{h_{n}}{ 2b_{n}}\tilde{\epsilon }_{n}^{T}\tilde{\epsilon }_{n}+\frac{h_{n}}{2b_{n}} \epsilon _{n}^{*T}\epsilon _{n}^{*} \end{aligned}$$
(96)

Substituting (94)–(96) in (93) yields

$$\begin{aligned} LV_{n}\le & {} -\sum _{i=1}^{n}c_{i}z_{i}^{4}-\sum _{i=2}^{n}\varpi _{i}\eta _{i}^{2}+\sum _{i=1}^{n}\rho _{i}(1+\epsilon _{i}^{*}) \nonumber \\{} & {} +\frac{3}{4}\sum _{i=1}^{n}l_{i}^{2}\sum _{i=1}^{n}\frac{m_{i}}{2\gamma _{i}} \tilde{\omega }_{i}^{T}\tilde{\omega }_{i}+\sum _{i=1}^{n}\frac{m_{i}}{2\gamma _{i}}\omega _{i}^{*T}\omega _{i}^{*} \nonumber \\{} & {} -\sum _{i=1}^{n}\frac{n_{i}}{2a_{i}}\tilde{\varepsilon }_{i}^{T}\tilde{ \varepsilon }_{i}+\sum _{i=1}^{n}\frac{n_{i}}{2a_{i}}\varepsilon _{i}^{*T}\varepsilon _{i}^{*} \nonumber \\{} & {} -\sum _{i=1}^{n}\frac{h_{i}}{2b_{i}}\tilde{\epsilon }_{i}^{T}\tilde{\epsilon } _{i}+\sum _{i=1}^{n}\frac{h_{i}}{2b_{i}}\epsilon _{i}^{*T}\epsilon _{i}^{*}+2(n-1)\iota \nonumber \\ \end{aligned}$$
(97)

Select some appropriate parameters with \(\varpi _{i}=\frac{1}{\chi _{i}}- \frac{1}{2\iota }\bar{M}_{i}^{2}(\cdot )-\frac{1}{2}>0,i=2,\ldots ,n.\)

Selecting

$$\begin{aligned} c=\min \left\{ 4c_{i}\underline{g}_{i},2\varpi _{i},m_{i},n_{i},h_{i}\right\} \end{aligned}$$
(98)

Substituting (94)–(96) in (97) gives

$$\begin{aligned} LV_{n}\le & {} -c\sum _{i=1}^{n}z_{i}^{4}-c\sum _{i=2}^{n}\eta _{i}^{2}+-c\sum _{i=1}^{n}\frac{1}{2\gamma _{i}}\tilde{\omega }_{i}^{T}\tilde{ \omega }_{i} \nonumber \\{} & {} -c\sum _{i=1}^{n}\frac{1}{2a_{i}}\tilde{\varepsilon }_{i}^{T}\tilde{ \varepsilon }_{i}-c\sum _{i=1}^{n-1}\frac{1}{2b_{i}}\tilde{\epsilon }_{i}^{T} \tilde{\epsilon }_{i}+b \end{aligned}$$
(99)

where

$$\begin{aligned} b= & {} \sum _{i=1}^{n}\frac{m_{i}}{2\gamma _{i}}\omega _{i}^{*T}\omega _{i}^{*}+\sum _{i=1}^{n}\frac{n_{i}}{2a_{i}}\varepsilon _{i}^{*T}\varepsilon _{i}^{*}+\sum _{i=1}^{n}\frac{h_{i}}{2b_{i}}\epsilon _{i}^{*T}\epsilon _{i}^{*} \nonumber \\{} & {} +2(n-1)\iota +\sum _{i=1}^{n}\rho _{i}(1+\epsilon _{i}^{*})+\sum _{i=1}^{n}\frac{3}{4}l_{i}^{2} \end{aligned}$$
(100)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gao, C., Cui, Y. et al. Command filtered adaptive fuzzy tracking control for uncertain stochastic nonlinear systems with event-triggered input. Nonlinear Dyn 112, 4585–4597 (2024). https://doi.org/10.1007/s11071-024-09293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09293-5

Keywords

Navigation