Skip to main content
Log in

Reduction of settling time by multi-frequency pulsed parametric excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Introducing a time-periodicity into a system parameter leads to parametric excitation, which in general, may cause a parametric resonance with exponentially increased vibration. Applying a parametric excitation but carefully tuning its frequencies to multiple parametric anti-resonance frequencies is investigated here. The parametric excitation here is realized by an open-loop control at the system boundary that allows for an energy flow into or from the system. A parametric anti-resonance successfully triggers an energy transfer between specific vibration modes of the system and occurs in systems with at least two degrees of freedom. Such an energy transfer increases the overall dissipation of kinetic energy of a lightly damped system. This contribution presents an approach to accelerate the mitigation of transient vibrations by applying a multi-frequency parametric excitation with two or more parametric anti-resonance frequencies. The potential application in a MEMS sensor arrangement consisting of two and more coupled flexible beams exemplifies the method. Starting from the minimum system with two degrees of freedom, the averaging method is applied to analyze the transient slow flow, leading to an analytical approximation of the transition time response of a pulsed multi-frequency parametric excitation system. For a specific example, a reduction of 96.7% of the transient vibrations is achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that all data supporting the simulations and examples of this study are available within the article.

References

  1. Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: High intermodulation gain in a micromechanical Duffing resonator. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2207490

    Article  Google Scholar 

  2. Andreaus, U., Dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004). https://doi.org/10.1177/1077546304038224

    Article  Google Scholar 

  3. Asadi, K., Yu, J., Cho, H.: Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2127), 20170141 (2018)

    Article  Google Scholar 

  4. Bayer, F., Leine, R.I.: Sorting-free hill-based stability analysis of periodic solutions through koopman analysi. Nonlinear Dyn. 111(1), 1–9 (2023). https://doi.org/10.1007/s11071-023-08247-7

    Article  Google Scholar 

  5. Cartmell, M.: Introduction to Linear, Parametric and Non-Linear Vibrations, 1st edn. Chapman and Hall, Boca Raton (1990)

    Google Scholar 

  6. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8(1), 15523 (2017)

    Article  Google Scholar 

  7. Choudhary, V., Iniewski, K.: Mems: fundamental technology and applications. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  8. Collado, J.: Hill Equation. From 1 to 2 Degrees of Freedom, pp. 43–71. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-62464-8_3

    Book  Google Scholar 

  9. Dick, N., Krylov, S.: Parametric resonance and pattern selection in an array of microcantilevers interacting through fringing electrostatic fields. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06755-y

    Article  Google Scholar 

  10. Dohnal, F.: Damping by parametric stiffness excitation: resonance and anti-resonance. J. Vib. Control 14(5), 669–688 (2008). https://doi.org/10.1177/1077546307082983

    Article  MathSciNet  Google Scholar 

  11. Dohnal, F.: General parametric stiffness excitation-anti-resonance frequency and symmetry. Acta Mech. 196(1–2), 15–31 (2008). https://doi.org/10.1007/s00707-007-0497-x

    Article  Google Scholar 

  12. Dohnal, F.: Optimal dynamic stabilisation of a linear system by periodic stiffness excitation. J. Sound Vib. 320(4), 777–792 (2009). https://doi.org/10.1016/j.jsv.2008.09.020

    Article  Google Scholar 

  13. Dohnal, F.: Experimental studies on damping by parametric excitation using electromagnets. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 226(8), 2015–2027 (2012)

    Article  Google Scholar 

  14. Dohnal, F., Tondl, A.: Using time-periodicity for inducing energy transfer between vibration modes. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 55973. American Society of Mechanical Engineers (2013)

  15. Dohnal, F., Verhulst, F.: Averaging in vibration suppression by parametric stiffness excitation. Nonlinear Dyn. 54(3), 231–248 (2008). https://doi.org/10.1007/s11071-007-9325-z

    Article  MathSciNet  Google Scholar 

  16. Fossen, T., Nijmeijer, H.: Parametric resonance in dynamical systems. Sci. Bus. Media (2011). https://doi.org/10.1007/978-1-4614-1043-0

    Article  Google Scholar 

  17. Hajjaj, A., Jaber, N., Ilyas, S., Alfosail, F., Younis, M.: Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int. J. Non-Linear Mech. 119, 103328 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103328

    Article  Google Scholar 

  18. Kovaleva, M., Manevitch, L., Romeo, F.: Stationary and non-stationary oscillatory dynamics of the parametric pendulum. Commun. Nonlinear Sci. Numer. Simul. 76, 1–11 (2019). https://doi.org/10.1016/j.cnsns.2019.02.016

    Article  MathSciNet  Google Scholar 

  19. Lacarbonara, W.: Nonlinear structural mechanics: theory, dynamical phenomena and modeling. Sci. Bus. Media (2013). https://doi.org/10.1007/978-1-4419-1276-3

    Article  Google Scholar 

  20. Mahboob, I., Nishiguchi, K., Okamoto, H., Yamaguchi, H.: Phonon-cavity electromechanics. Nat. Phys. 8(5), 387 (2012). https://doi.org/10.1038/nphys2277

    Article  Google Scholar 

  21. Mahboob, I., Yamaguchi, H.: Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 3(5), 275 (2008). https://doi.org/10.1038/nnano.2008.84

    Article  Google Scholar 

  22. Maurini, C., dell’Isola, F., Del Vescovo, D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18(5), 1243–1271 (2004). https://doi.org/10.1016/S0888-3270(03)00082-7

    Article  Google Scholar 

  23. Moran, K., Burgner, C., Shaw, S., Turner, K.: A review of parametric resonance in microelectromechanical systems. Nonlinear Theory Appl. IEICE 4(3), 198–224 (2013). https://doi.org/10.1587/nolta.4.198

    Article  Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, London (1995)

    Book  Google Scholar 

  25. Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9(8), 480 (2013). https://doi.org/10.1038/nphys2665

    Article  Google Scholar 

  26. Okamoto, H., Mahboob, I., Onomitsu, K., Yamaguchi, H.: Rapid switching in high-Q mechanical resonators. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4894417

    Article  Google Scholar 

  27. Ramírez-Barrios, M., Collado, J., Dohnal, F.: Coupled mathieu equations: \(\gamma \)-hamiltonian and \(\mu \)-symplectic. Dyn. Syst. Theory. IntechOpen (2019). https://doi.org/10.5772/intechopen.88635

    Article  Google Scholar 

  28. Ramírez-Barrios, M., Collado, J., Dohnal, F.: Stability of coupled and damped mathieu equations utilizing symplectic properties. In: W. Lacarbonara, B. Balachandran, J. Ma, J.A. Tenreiro Machado, G. Stepan (eds.) Nonlinear Dynamics of Structures, Systems and Devices, pp. 137–145. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-34713-0_14

  29. Ramírez-Barrios, M., Dohnal, F., Collado, J.: Enhanced vibration decay in high-q resonators by confined of parametric excitation. Arch. Appl. Mech. 90(8), 1673–1684 (2020). https://doi.org/10.1007/s00419-020-01689-0

    Article  Google Scholar 

  30. Ramírez-Barrios, M., Dohnal, F., Collado, J.: Transient vibrations suppression in parametrically excited resonators. In: Hernandez, E.E., Keshtkar, S., Valdez, S.I. (eds.) Industrial and Robotic Systems, pp. 193–205. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45402-9_19

    Chapter  Google Scholar 

  31. Rand, R., Morrison, T.: 2:1:1 resonance in the quasi-periodic mathieu equation. Nonlinear Dyn. 40, 195–203 (2005). https://doi.org/10.1007/s11071-005-6005-8

    Article  MathSciNet  Google Scholar 

  32. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4), 797–829 (2006). https://doi.org/10.1016/j.jsv.2006.03.009

    Article  Google Scholar 

  33. Rossing, T.D., Fletcher, N.H., Tubis, A.: Principles of Vibration and Sound, 2nd edition. J. Acoust. Soc. Am. 116(5), 2708–2708 (2004). https://doi.org/10.1121/1.1810535

    Article  Google Scholar 

  34. Shoshani, O., Shaw, S.W.: Resonant modal interactions in micro/nano-mechanical structures. Nonlinear Dyn. 104, 1801–1828 (2021)

    Article  Google Scholar 

  35. Thomsen, J.J.: Vibrations and stability: advanced theory, analysis, and tools. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68045-9

    Book  Google Scholar 

  36. Tondl, A.: Quenching of self-excited vibrations equilibrium aspects. J. Sound Vib. 42(2), 251–260 (1975). https://doi.org/10.1016/0022-460X(75)90220-5

    Article  Google Scholar 

  37. Tongue, B.H.: Principles of vibration. Oxford University Press, USA (2002)

    Google Scholar 

  38. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: Part II-resonance capture. J. Appl. Mech. 68(1), 42–48 (2000). https://doi.org/10.1115/1.1345525

    Article  Google Scholar 

  39. Verhulst, F.: Nonlinear differential equations and dynamical systems. Springer, Berlin (2006)

    Google Scholar 

  40. Verhulst, F.: Multiple timing and spatial scaling for bifurcations. Nonlinear Dyn. 111(12), 10693–10707 (2023). https://doi.org/10.1007/s11071-023-08378-x

    Article  Google Scholar 

  41. Voiculescu, I., Nordin, A.N.: Acoustic wave based mems devices for biosensing applications. Biosens. Bioelectron. 33(1), 1–9 (2012). https://doi.org/10.1016/j.bios.2011.12.041

    Article  Google Scholar 

  42. Wooden, S.M., Sinha, S.: Analysis of periodic-quasiperiodic nonlinear systems via lyapunov-floquet transformation and normal forms. Nonlinear Dyn. 47, 263–273 (2007). https://doi.org/10.1007/s11071-006-9072-6

    Article  MathSciNet  Google Scholar 

  43. Yakubovich, V., Starzhinskii, V.: Linear Differential Equations With Periodic Coefficients, vol. 1,2. Wiley, London (1975)

    Google Scholar 

  44. Younis, M.I.: MEMS linear and nonlinear statics and dynamics, vol. 20. Springer, Berlin (2011)

    Google Scholar 

  45. Zounes, R.S., Rand, R.H.: Global behavior of a nonlinear quasiperiodic mathieu equation. Nonlinear Dyn. 27, 87–105 (2002). https://doi.org/10.1023/A:1017931712099

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author MRB thanks the IPN-SIP-202315 and the Austrian Academy of Sciences for their support for the development of this project.

Funding

This work was supported by the Joint Excellence in Science and Humanities (JESH) programme of the Austrian Academy of Sciences through the grant given to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ramírez-Barrios.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 13
figure 13

Comparison between the full solution \(x_1(t)\) of the original system and the envelope \(\vert \hat{u}_1 \vert \) of the approximate system

The solution \(x_1(t)\) of beam 1 of the original systems for configurations with 2DOF, 3DOF and 4DOF defined in Eqs. (16), (23) and (30) is compared directly with the solution \(\vert \hat{u_1} \vert \) of the approximated slow flows in Eqs. (17), (25) and (32). This is possible due to the definition in Eq. (6). The solutions are transformed according to Eq. (4) into the physical time t. The system parameters are taken from the list given in Table 2. The initial condition is chosen as \(x_1(0) = 0\) in all cases. Figure 13 highlights the quality of the approximation between the physical time evolution and the envelope represented by the slow flow.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Barrios, M., Dohnal, F. Reduction of settling time by multi-frequency pulsed parametric excitation. Nonlinear Dyn 112, 7185–7198 (2024). https://doi.org/10.1007/s11071-024-09281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09281-9

Keywords

Navigation