Skip to main content
Log in

Time-delay identification from chaotic time series via statistical complexity measures based on ordinal pattern transition networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel time-delay parameter identification method is proposed based on nonlinear time series analysis combined with network theory. This method accurately reveals the intrinsic time-delay characteristics of the underlying system dynamics. Time-delay parameters are identified from chaotic time series by using two statistical complexity measures defined by two normalized matrices encoding ordinal pattern transition networks of the time series. The proposed method is straightforward to apply and has two prime advantages: it is robust to time series contaminated by dynamical or observational noise, and it is well suited for handling relatively short time series. It increases the upper bound of the possible range of applicable (dynamical) noise intensities by at least two orders of magnitude versus the permutation–information–theory approach. It can also detect two time-delay parameters for relatively short time series in a two-time-delay system, which the delayed mutual information cannot do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Glass, L., Mackey, M.C.: Oscillation and chaos in physiological control systems. Science. 197, 287–289 (1977). https://doi.org/10.2307/1744526

    Article  ADS  PubMed  Google Scholar 

  2. Karamched, B., Hripcsak, G., Albers, D., Ott, W.: Delay-induced uncertainty for a paradigmatic glucose-insulin model. Chaos (2021). https://doi.org/10.1063/5.0027682

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  3. May, R.M.: Nonlinear phenomena in ecology and epidemiology. Ann. N. Y. Acad. Sci. 357, 267–281 (1980). https://doi.org/10.1111/j.1749-6632.1980.tb29692.x

    Article  ADS  MathSciNet  Google Scholar 

  4. Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980). https://doi.org/10.1038/287017a0

    Article  ADS  Google Scholar 

  5. Suarez, M.J., Schopf, P.S.: A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988)

    Article  ADS  Google Scholar 

  6. Boutle, I., Taylor, R.H.S., Römer, R.A.: El Niño and the delayed action oscillator. Am. J. Phys. 75, 15–24 (2007)

    Article  ADS  Google Scholar 

  7. Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979). https://doi.org/10.1016/0030-4018(79)90090-7

    Article  ADS  Google Scholar 

  8. Min, S., Daljevic, T., Lafreniere-Roula, M., Manlhiot, C., Nalli, N., Grasemann, H., Schwartz, S., Kamath, B., Ng, V., Parekh, R., Al., E.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)

    Article  Google Scholar 

  9. Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005). https://doi.org/10.1038/nature04275

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cruz-Hernández, C., Romero-Haros, N.: Communicating via synchronized time-delay Chua’s circuits. Commun. Nonlinear Sci. Numer. Simul. 13, 645–659 (2008). https://doi.org/10.1016/j.cnsns.2006.06.010

    Article  ADS  MathSciNet  Google Scholar 

  11. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of nonlinear time-delay systems. Springer Science & Business Media. Springer, Heidelberg (2011)

  12. Lin, T.C., Huang, F.Y., Du, Z., Lin, Y.C.: Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication. Int. J. Fuzzy Syst. 17, 206–214 (2015). https://doi.org/10.1007/s40815-015-0024-5

    Article  MathSciNet  Google Scholar 

  13. Wang, X.F., Zhong, G.Q., Tang, K.S., Man, K.F., Liu, Z.F.: Generating chaos in chua’s circuit via time-delay feedback. IEEE Trans Circuits Syst. I Fundam. Theory Appl. 48, 1151–1156 (2001). https://doi.org/10.1109/81.948446

    Article  Google Scholar 

  14. Goedgebuer, J.P., Larger, L., Porte, H.: Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Phys. Rev. Lett. 80, 2249–2252 (1998). https://doi.org/10.1103/PhysRevLett.80.2249

    Article  ADS  CAS  Google Scholar 

  15. Rawson, H.: Mathematical modelling. J. Non Cryst. Solids 73, 551–563 (1985). https://doi.org/10.1016/0022-3093(85)90374-6

    Article  ADS  CAS  Google Scholar 

  16. Gainsburg, J.: The mathematical modeling of structural engineers. Math. Think. Learn. 8, 3–36 (2006). https://doi.org/10.1207/s15327833mtl0801

    Article  Google Scholar 

  17. Dym, C.L., Ivey, E.S., Stewart, M.B.: Principles of mathematical modeling. Am. J. Phys. 48, 994–995 (1980). https://doi.org/10.1119/1.12359

    Article  ADS  Google Scholar 

  18. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process structures. Lect. Notes Comput. Sci. 4803, 131–149 (2007). https://doi.org/10.1007/978-3-540-76848-7_10

  19. Yager, R.R., Filev, D.P.: Unified structure and parameter identification of fuzzy models. IEEE Trans. Syst. Man Cybern. 23, 1198–1205 (1993). https://doi.org/10.1109/21.247902

    Article  Google Scholar 

  20. Isaev, R.A., Podvesovskii, A.G.: Application of time series analysis for structural and parametric identification of fuzzy cognitive models. In: CEUR Workshop Proc. 2212, pp. 119–125 (2018). https://doi.org/10.18287/1613-0073-2018-2212-119-125

  21. Makarychev, P.: Structural and parametric identification of nonlinear dynamic objects. In: Moscow Work. Electron. Netw. Technol. MWENT 2020 - Proc. 2–5 (2020). https://doi.org/10.1109/MWENT47943.2020.9067500

  22. Novoseltseva, M.A., Gutova, S.G., Kazakevich, I.A.: Structural and parametric identification of a multisinusoidal signal model by using continued fractions. In: 2018 Int. Russ. Autom. Conf. RusAutoCon 2018, pp. 1–5 (2018). https://doi.org/10.1109/RUSAUTOCON.2018.8501834

  23. Novoseltseva, M.A., Gutova, S.G., Kagan, E.S.: The influence of discretization step on the accuracy of the structural-parametric identification of multisinusoidal signals. In: 2020 Int. Multi-Conference Ind. Eng. Mod. Technol. FarEastCon 2020, pp. 2–6 (2020). https://doi.org/10.1109/FarEastCon50210.2020.9271542

  24. Ostrovskii, V., Fedoseev, P., Bobrova, Y., Butusov, D.: Structural and parametric identification of knowm memristors. Nanomaterials (2022). https://doi.org/10.3390/nano12010063

    Article  Google Scholar 

  25. Udaltsov, V.S., Larger, L., Goedgebuer, J.P., Locquet, A., Citrin, D.S.: Time delay identification in chaotic cryptosystems ruled by delay-differential equations. J. Opt. Technol. 72, 373 (2005). https://doi.org/10.1364/jot.72.000373

    Article  ADS  Google Scholar 

  26. Nguimdo, R.M., Soriano, M.C., Colet, P.: Role of the phase in the identification of delay time in semiconductor lasers with optical feedback. Opt. Lett. 36, 4332 (2011). https://doi.org/10.1364/ol.36.004332

    Article  ADS  PubMed  Google Scholar 

  27. Bünner, M.J., Popp, M., Meyer, T., Kittel, A., Rau, U., Parisi, J.: Recovery of scalar time-delay systems from time series. Phys. Lett. Sect A Gen. At. Solid State Phys. 211, 345–349 (1996). https://doi.org/10.1016/0375-9601(96)00014-X

    Article  Google Scholar 

  28. Bünner, M.J., Popp, M., Meyer, T., Kittel, A., Parisi, J.: Tool to recover scalar time-delay systems from experimental time series. Phys. Rev. E - Stat. Physics, Plasmas, Fluids Relat. Interdiscip. Top. 54, R3082–R3085 (1996). https://doi.org/10.1103/PhysRevE.54.R3082

    Article  ADS  Google Scholar 

  29. Bünner, M.J., Meyer, T., Kittel, A., Parisi, J.: Recovery of the time-evolution equation of time-delay systems from time series. Phys. Rev. E - Stat. Physics, Plasmas, Fluids Relat. Interdiscip. Top. 56, 5083–5089 (1997). https://doi.org/10.1103/PhysRevE.56.5083

    Article  ADS  MathSciNet  Google Scholar 

  30. Tian, Y.C., Gao, F.: Extraction of delay information from chaotic time series based on information entropy. Phys. D Nonlinear Phenom. 108, 113–118 (1997). https://doi.org/10.1016/S0167-2789(97)82008-8

    Article  ADS  MathSciNet  Google Scholar 

  31. Azad, R.K., Subba Rao, J., Ramaswamy, R.: Information-entropic analysis of chaotic time series: determination of time-delays and dynamical coupling. Chaos Solitons Fractals 14, 633–641 (2002). https://doi.org/10.1016/S0960-0779(02)00003-6

    Article  ADS  Google Scholar 

  32. Siefert, M.: Practical criterion for delay estimation using random perturbations. Phys. Rev. E - Stat Nonlinear, Soft Matter Phys. 76, 1–5 (2007). https://doi.org/10.1103/PhysRevE.76.026215

    Article  CAS  Google Scholar 

  33. Zunino, L., Soriano, M.C., Fischer, I., Rosso, O.A., Mirasso, C.R.: Permutation-information-theory approach to unveil delay dynamics from time-series analysis. Phys. Rev. E - Stat Nonlinear, Soft Matter Phys. 82, 1–9 (2010). https://doi.org/10.1103/PhysRevE.82.046212

    Article  MathSciNet  CAS  Google Scholar 

  34. Zhu, S., Gan, L.: Incomplete phase-space method to reveal time delay from scalar time series. Phys. Rev. E 94, 1–13 (2016). https://doi.org/10.1103/PhysRevE.94.052210

    Article  Google Scholar 

  35. Soriano, M.C., Zunino, L.: Time-delay identification using multiscale ordinal quantifiers. Entropy 23, 1–15 (2021). https://doi.org/10.3390/e23080969

    Article  Google Scholar 

  36. Li, L.J., Dong, T.T., Zhang, S., Zhang, X.X., Yang, S.P.: Time-delay identification in dynamic processes with disturbance via correlation analysis. Control. Eng. Pract. 62, 92–101 (2017). https://doi.org/10.1016/j.conengprac.2017.03.007

    Article  Google Scholar 

  37. Zhang, T., Lu, Z., Liu, J., Liu, G.: Parameter identification of nonlinear systems with time-delay from time-domain data. Nonlinear Dyn. 104, 4045–4061 (2021). https://doi.org/10.1007/s11071-021-06454-8

    Article  Google Scholar 

  38. Tang, Y., Guan, X.: Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos Solitons Fractals 40, 1391–1398 (2009). https://doi.org/10.1016/j.chaos.2007.09.055

    Article  ADS  Google Scholar 

  39. Loxton, R., Teo, K.L., Rehbock, V.: An optimization approach to state-delay identification. IEEE Trans. Autom. Control 55, 2113–2119 (2010)

    Article  MathSciNet  Google Scholar 

  40. Lin, Q., Loxton, R., Xu, C., Teo, K.L.: Parameter estimation for nonlinear time-delay systems with noisy output measurements. Automatica 60, 48–56 (2015). https://doi.org/10.1016/j.automatica.2015.06.028

    Article  MathSciNet  Google Scholar 

  41. Zou, Y., Donner, R.V., Marwan, N., Donges, J.F., Kurths, J.: Complex network approaches to nonlinear time series analysis. Phys. Rep. 787, 1–97 (2019). https://doi.org/10.1016/j.physrep.2018.10.005

    Article  ADS  MathSciNet  Google Scholar 

  42. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks-a novel paradigm for nonlinear time series analysis. New J. Phys. (2010). https://doi.org/10.1088/1367-2630/12/3/033025

    Article  Google Scholar 

  43. Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.: Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurc. Chaos. 21, 1019–1046 (2011). https://doi.org/10.1142/S0218127411029021

    Article  MathSciNet  Google Scholar 

  44. Zou, Y., Donner, R.V., Marwan, N., Small, M., Kurths, J.: Long-term changes in the north-south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs. Nonlinear Process. Geophys. 21, 1113–1126 (2014). https://doi.org/10.5194/npg-21-1113-2014

    Article  ADS  Google Scholar 

  45. Lacasa, L., Just, W.: Visibility graphs and symbolic dynamics. Phys. D Nonlinear Phenom. 374–375, 35–44 (2018). https://doi.org/10.1016/j.physd.2018.04.001

    Article  ADS  MathSciNet  Google Scholar 

  46. Small, M.: Complex networks from time series: capturing dynamics. In: Proc. - IEEE Int. Symp. Circuits Syst., pp. 2509–2512 (2013). https://doi.org/10.1109/ISCAS.2013.6572389

  47. McCullough, M., Small, M., Stemler, T., Iu, H.H.C.: Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos (2015). https://doi.org/10.1063/1.4919075

    Article  MathSciNet  PubMed  Google Scholar 

  48. Borges, J.B., Ramos, H.S., Mini, R.A.F., Rosso, O.A., Frery, A.C., Loureiro, A.A.F.: Learning and distinguishing time series dynamics via ordinal patterns transition graphs. Appl. Math. Comput. 362, 124554 (2019). https://doi.org/10.1016/j.amc.2019.06.068

    Article  MathSciNet  Google Scholar 

  49. McCullough, M., Sakellariou, K., Stemler, T., Small, M.: Regenerating time series from ordinal networks. Chaos (2017). https://doi.org/10.1063/1.4978743

    Article  MathSciNet  PubMed  Google Scholar 

  50. Ruan, Y., Donner, R.V., Guan, S., Zou, Y.: Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Chaos (2019). https://doi.org/10.1063/1.5086527

    Article  MathSciNet  PubMed  Google Scholar 

  51. Pessa, A.A.B., Ribeiro, H.V.: Characterizing stochastic time series with ordinal networks. Phys. Rev. E 100, 42304 (2019). https://doi.org/10.1103/PhysRevE.100.042304

    Article  ADS  MathSciNet  CAS  Google Scholar 

  52. Sakellariou, K., Stemler, T., Small, M.: Markov modeling via ordinal partitions: an alternative paradigm for network-based time-series analysis. Phys. Rev. E 100, 1–28 (2019). https://doi.org/10.1103/PhysRevE.100.062307

    Article  Google Scholar 

  53. Wu, H., Zou, Y., Alves, L.M., MacAu, E.E.N., Sampaio, G., Marengo, J.A.: Uncovering episodic influence of oceans on extreme drought events in Northeast Brazil by ordinal partition network approaches. Chaos (2020). https://doi.org/10.1063/5.0004348

    Article  MathSciNet  PubMed  Google Scholar 

  54. Olivares, F., Zanin, M., Zunino, L., Pérez, D.G.: Contrasting chaotic with stochastic dynamics via ordinal transition networks. Chaos (2020). https://doi.org/10.1063/1.5142500

    Article  MathSciNet  PubMed  Google Scholar 

  55. Zhang, B., Shang, P., Liu, J.: Transition-based complexity-entropy causality diagram: a novel method to characterize complex systems. Commun. Nonlinear Sci. Numer. Simul. 95, 105660 (2021). https://doi.org/10.1016/j.cnsns.2020.105660

    Article  MathSciNet  Google Scholar 

  56. Huang, M., Sun, Z., Donner, R.V., Zhang, J., Guan, S., Zou, Y.: Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. Chaos (2021). https://doi.org/10.1063/5.0038876

    Article  MathSciNet  PubMed  Google Scholar 

  57. Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. 366–381 (1981)

  58. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 1–4 (2002)

    Article  Google Scholar 

  59. Shannon, C.E.: A mathematical theory of communication. ACM Sigmobile Mob. Comput. Commun. Rev. 5, 3–55 (2001). https://doi.org/10.1002/j.1538-7305.1968.tb00069.x

    Article  Google Scholar 

  60. Sun, Z.K., Yang, X.L., Xu, W.: Taming complexity in nonlinear dynamical systems by recycled signal. Sci. China Technol. Sci. 59, 403–410 (2016). https://doi.org/10.1007/s11431-015-5993-y

    Article  ADS  Google Scholar 

  61. López-Ruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209, 321–326 (1995). https://doi.org/10.1016/0375-9601(95)00867-5

    Article  ADS  Google Scholar 

  62. Martin, M.T., Plastino, A., Rosso, O.A.: Statistical complexity and disequilibrium. Phys. Lett. Sect A Gen. At. Solid State Phys. 311, 126–132 (2003). https://doi.org/10.1016/S0375-9601(03)00491-2

    Article  MathSciNet  CAS  Google Scholar 

  63. Lamberti, P.W., Martin, M.T., Plastino, A., Rosso, O.A.: Intensive entropic non-triviality measure. Phys. A Stat. Mech. its Appl. 334, 119–131 (2004). https://doi.org/10.1016/j.physa.2003.11.005

    Article  ADS  MathSciNet  Google Scholar 

  64. Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A.: Distinguishing noise from chaos. Phys. Rev. Lett. 99, 1–4 (2007). https://doi.org/10.1103/PhysRevLett.99.154102

    Article  CAS  Google Scholar 

  65. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D. 23, 357–362 (1981). https://doi.org/10.1103/PhysRevD.23.357

    Article  ADS  MathSciNet  Google Scholar 

  66. Statistics, M.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  67. Kowalski, A.M., Martín, M.T., Plastino, A., Rosso, O.A., Casas, M.: Distances in probability space and the statistical complexity setup. Entropy 13, 1055–1075 (2011). https://doi.org/10.3390/e13061055

    Article  ADS  MathSciNet  Google Scholar 

  68. Doyne Farmer, J.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D Nonlinear Phenom. 4, 366–393 (1982). https://doi.org/10.1016/0167-2789(82)90042-2

    Article  ADS  MathSciNet  Google Scholar 

  69. Chen, Y., Ling, G., Song, X., Tu, W.: Characterizing the statistical complexity of nonlinear time series via ordinal pattern transition networks. Phys. A Stat. Mech. Appl. 618, 128670 (2023). https://doi.org/10.1016/j.physa.2023.128670

    Article  MathSciNet  Google Scholar 

  70. Zunino, L., Olivares, F., Ribeiro, H.V., Rosso, O.A.: Permutation Jensen-Shannon distance: a versatile and fast symbolic tool for complex time-series analysis. Phys. Rev. E 105, 1–21 (2022). https://doi.org/10.1103/PhysRevE.105.045310

    Article  Google Scholar 

  71. Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009)

    Google Scholar 

  72. Rusinek, R., Weremczuk, A., Kecik, K., Warminski, J.: Dynamics of a time delayed Duffing oscillator. Int. J. Non. Linear. Mech. 65, 98–106 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.012

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772254 and 11972288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The iteration formula for simulation

The iteration formula of the simulation time series of Eq. (1) by using the modified Euler’s method can be expressed as follows:

$$ \overline{x}_{i + 1} = x_{i} + h[ - x_{i} + \beta {\text{sin}}^{2} \left( {x_{i - C} { }{-}{ }\varphi_{0} } \right)] $$
(A.1)
$$ x_{i + 1} = x_{i} + \frac{h}{2}\left[ {\left( { - x_{i} + \beta {\text{sin}}^{2} \left( {x_{i - C} { } - { }\varphi_{0} } \right)} \right) + \left( { - \overline{x}_{i + 1} + \beta {\text{sin}}^{2} \left( {x_{i + 1 - C} { } - { }\varphi_{0} } \right)} \right)} \right] $$
(A.2)

where C = τ/h is a nonnegative integer.

The iteration formula of the simulation time series of Eq. (2) by using the modified Euler’s method can be expressed as follows:

$$ \overline{x}_{i + 1} = x_{i} + h\left[ { - x_{i} + \beta {\text{sin}}^{2} \left( {x_{i - C} { } - { }\varphi_{0} } \right)} \right] + h\theta_{i} $$
(A.3)
$$ x_{i + 1} = x_{i} + \frac{h}{2}\left[ {\left( { - x_{i} + \beta {\text{sin}}^{2} \left( {x_{i - C} { } - { }\varphi_{0} } \right)} \right) + \left( { - \overline{x}_{i + 1} + \beta {\text{sin}}^{2} \left( {x_{i + 1 - C} { } - { }\varphi_{0} } \right)} \right)} \right] + \theta_{i} $$
(A.4)

where C = τ/h is a nonnegative integer, and the {\({\theta }_{i}\)} is a Gaussian white noise series with the noise intensity D.

The generation step of the {\({\theta }_{i}\)} can be described as: first and foremost, the independent identically distributed standard normal random number {\({\xi }_{i}\)} is obtained via the random number generator. Then, the {\({\theta }_{i}\)} can be generated by transforming the {\({\xi }_{i}\)} into formula \({\theta }_{i}\) = \(\sqrt{D/h}{\xi }_{i}\).

The iteration formula of the simulation time series of Eq. (3) by using the modified Euler’s method can be expressed as follows:

$$ \overline{x}_{i + 1} = x_{i} + h\left[ { - x_{i} + \beta {\text{sin}}^{2} \left( {x_{{i - C_{1} }} + { }\varphi_{0} \left( {1 + { }k_{p} x_{{i - C_{2} }} } \right)} \right)} \right] $$
(A.5)
$$ x_{i + 1} = x_{i} + \frac{h}{2}\left[ {\left( { - x_{i} + \beta {\text{sin}}^{2} \left( {x_{{i - C_{1} }} + { }\varphi_{0} \left( {1 + { }k_{p} x_{{i - C_{2} }} } \right)} \right)} \right) + \left( { - \overline{x}_{i + 1} + \beta {\text{sin}}^{2} \left( {x_{{i + 1 - C_{1} }} + { }\varphi_{0} \left( {1 + { }k_{p} x_{{i + 1 - C_{2} }} } \right)} \right)} \right)} \right] $$
(A.6)

Where β = 3.5, \({\varphi }_{0}\) = 3.5, \({k}_{p}\) = 0.43. \({C}_{1}\) = \({\tau }_{1}\)/h and \({C}_{2}\) = \({\tau }_{2}\)/h are nonnegative integers, where \({\tau }_{1}\) = 100 and \({\tau }_{2}\) = 77.

Appendix B: Identification results for two other typical time-delay systems

To demonstrate the universality of the proposed methodology, identification results for two representative time-delay systems are provided. The first system is the following Mackey–Glass equation [1]:

$$ \frac{{{\text{d}}x\left( t \right)}}{{{\text{d}}t}} = - x\left( t \right) + \frac{{\beta x\left( {t {-}{ }\tau } \right)}}{{1 + x^{c} \left( {t {-} \tau } \right)}} $$
(B.1)

System parameters are set to β = 2, c = 10. The time-delay parameter is set to τ = 60. The initial function is x(t) = 1, t ∊ [-τ, 0]. The second system is the following time-delay Duffing equation [72]:

$$ \frac{{{\text{d}}x\left( t \right)}}{{{\text{d}}t}} = y\left( t \right) $$
(B.2.1)
$$ \frac{{{\text{d}}y\left( t \right)}}{{{\text{d}}t}} = - \xi y\left( t \right) - \omega x\left( t \right) - \mu x^{3} \left( t \right) - \beta x\left( {t - { }\tau } \right) + f{\text{cos}}(\Omega t) $$
(B.2.2)

System parameters are set to ξ = 0.2, ω = -1, μ = 0.8, β = -0.8, f = 0.5, Ω = 1. The time-delay parameter is set to τ = 100. Initial functions are x(t) = 1 and y(t) = 1, t ∊ [-τ, 0].

For these two systems, the simulation method used here is the same as that used in Sect. 3. Note that the y-coordinate time series is employed for the time-delay Duffing system to construct the corresponding OPTN. Identification results of the time-delay parameter τ by utilizing the proposed quantifiers with the embedding dimension M = 4 are shown in Fig. 

Fig. 10
figure 10

(Color online) a to d show the curve of the proposed quantifiers as a function of the embedding delay \({\tau }_{e}\) for the Mackey–Glass system. e to h show the curve of the proposed quantifiers as a function of the embedding delay \({\tau }_{e}\) for the time-delay Duffing system

10a–h. It can be clearly observed that each curve has a significant extremum at \({\tau }_{e}\) = τ/δh (for the Mackey–Glass system \({\tau }_{e}\) = 120 and for the time-delay Duffing system \({\tau }_{e}\) = 200).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Sun, ZK. Time-delay identification from chaotic time series via statistical complexity measures based on ordinal pattern transition networks. Nonlinear Dyn 112, 3519–3540 (2024). https://doi.org/10.1007/s11071-023-09256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09256-2

Keywords

Navigation