Skip to main content
Log in

An adaptive generalized extended Kalman filter for real-time identification of structural systems, state and input based on sparse measurement

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Extended Kalman filtering with unknown input (EKF-UI) is often used to estimate the structural system state, parameters and unknown input in structural health monitoring. However, the real-time performance of EKF-UI is bound to whether the measurement equation has a direct feedthrough of unknown input, which great limits its application scope. Based on the zero-order-hold assumption and random walk assumption of unknown input, a novel adaptive discrete state equation is derived in this paper. The new equation establishes a connection between the current state and the current input and allows the adjustment of the sensitivity matrix of the unknown input. Then, based on the adaptive discrete state equation and minimum variance unbiased estimation principle, an adaptive generalized extended Kalman filter with unknown input is derived. The proposed algorithm eliminates the limitation that the real-time performance is restricted by whether the measurement equation has a direct feedthrough of the input and realizes the optimization of the state and input estimates in the sense of minimum variance. To demonstrate the feasibility of the proposed method, numerical example of a shear frame structure with Bouc–Wen hysteresis nonlinearity and experimental test of a five-story shear frame are conducted. The comparison with existing methods shows the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data in this study are available from the corresponding author upon reasonable request.

References

  1. Ghanem, R., Shinozuka, M.: Structural system identification I: theory. J. Eng. Mech. (ASCE) 121(2), 255–264 (1995)

    Google Scholar 

  2. Ou, J., Li, H.: Structural health monitoring in mainland China: review and future trends. Struct. Health Monit. Int. J. 9(3), 219–231 (2010)

    Google Scholar 

  3. Wang, Z., Ren, W., Chen, G.: A Hilbert transform method for parameter identification of time-varying structures with observer techniques. Smart Mater. Struct. 21(10), 105007 (2012)

    ADS  Google Scholar 

  4. Mariani, S., Ghisi, A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49(1), 131–150 (2007)

    Google Scholar 

  5. Lai, Z., Sun, T., Nagarajaiah, S.: Adjustable template stiffness device and SDOF nonlinear frequency response. Nonlinear Dyn. 96(2), 1559–1573 (2019)

    Google Scholar 

  6. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    MathSciNet  Google Scholar 

  7. Yang, B., Zhu, H., Zheng, Q., et al.: Identification of wind loads on a 600 m high skyscraper by Kalman filter. J. Build. Eng. 63, 105440 (2022)

    Google Scholar 

  8. Yang, J., Lin, S., Huang, H., Zhou, L.: An adaptive extended Kalman filter for structural damage identification. Struct. Control. Health Monit. 13(4), 849–867 (2006)

    Google Scholar 

  9. Agarwal, V., Parthasarathy, H.: Disturbance estimator as a state observer with extended Kalman filter for robotic manipulator. Nonlinear Dyn. 85(4), 2809–2825 (2016)

    MathSciNet  Google Scholar 

  10. Ying, Z., Zhu, W.: Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter. Nonlinear Dyn. 90(1), 105–114 (2017)

    MathSciNet  Google Scholar 

  11. Erazo, K., Nagarajaiah, S.: An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering. J. Sound Vib. 397, 222–240 (2017)

    ADS  Google Scholar 

  12. Gillijns, S., Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica 43(5), 934–937 (2007)

    MathSciNet  Google Scholar 

  13. Yang, J., Pan, S., Huang, H.: An adaptive extended Kalman filter for structural damage identifications II: unknown inputs. Struct. Control. Health Monit. 14(3), 497–521 (2007)

    Google Scholar 

  14. Hwang, J., Lee, S., Jihoon, P., EunJong, Y.: Force identification from structural responses using Kalman filter. Materials 33, 257–266 (2009)

    CAS  Google Scholar 

  15. Hwang, J., Kareem, A., Kim, H.: Wind load identification using wind tunnel test data by inverse analysis. J. Wind Eng. Ind. Aerodyn. 99, 18–26 (2011)

    Google Scholar 

  16. Niu, Y., Fritzen, C., Jung, H., et al.: Online simultaneous reconstruction of wind load and structural responses-theory and application to canton tower. Comput. Aid. Civ. Infrastruct. Eng. 30(8), 666–681 (2015)

    Google Scholar 

  17. Lin, D.: Input estimation for nonlinear systems. Inverse Probl. Sci. Eng. 18(5), 673–689 (2010)

    MathSciNet  Google Scholar 

  18. Pan, S., Su, H., Wang, H., Chu, J.: The study of input and state estimation with Kalman filtering. Inst. Meas. Control 33(8), 901–918 (2011)

    Google Scholar 

  19. Lourens, E., Reynders, E., Roeck, G., et al.: An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)

    ADS  Google Scholar 

  20. Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G., Lombaert, G.: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors. Mech. Syst. Signal Process. 29, 310–327 (2012)

    ADS  Google Scholar 

  21. Wei, D., Li, D., Huang, J.: Improved force identification with augmented Kalman filter based on the sparse constraint. Mech. Syst. Signal Process. 167, 108561 (2022)

    Google Scholar 

  22. He, J., Zhang, X., Xu, B.: Identification of structural parameters and unknown inputs based on revised observation equation: approach and validation. Int. J. Struct. Stab. Dyn. 19(12), 1950156 (2019)

    Google Scholar 

  23. Nayek, R., Chakraborty, S., Narasimhan, S.: A Gaussian process latent force model for joint input-state estimation in linear structural systems. Mech. Syst. Signal Process. 128, 497–530 (2019)

    ADS  Google Scholar 

  24. Lei, Y., Jiang, Y., Xu, Z.: Structural damage detection with limited input and output measurement signals. Mech. Syst. Signal Process. 28, 229–243 (2012)

    ADS  Google Scholar 

  25. Lei, Y., Liu, C., Liu, L.: Identification of multistory shear buildings under unknown earthquake excitation using partial output measurements: numerical and experimental studies. Struct. Control. Health Monit. 21(5), 774–783 (2014)

    Google Scholar 

  26. Liu, L., Su, Y., Zhu, J., Lei, Y.: Data fusion based EKF-UI for real-time simultaneous identification of structural systems and unknown external inputs. Measurement 88, 456–467 (2016)

    ADS  Google Scholar 

  27. Capellari, G., Chatzi, E., Mariani, S.: Optimal sensor placement through bayesian experimental design: effect of measurement noise and number of sensors. Proceedings 1(2), 41 (2017)

    Google Scholar 

  28. Gillijns, S., Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43(1), 111–116 (2007)

    MathSciNet  Google Scholar 

  29. Pan, S., Su, H., Chu, J., Wang, H.: Applying a novel extended Kalman filter to missile–target interception with APN guidance law: a benchmark case study. Control. Eng. Pract. 18(2), 159–167 (2010)

    Google Scholar 

  30. Pan, S., Xiao, D., Xing, S., et al.: A general extended Kalman filter for simultaneous estimation of system and unknown inputs. Eng. Struct. 109, 85–98 (2016)

    Google Scholar 

  31. Huang, J., Rao, Y., Qiu, H., Lei, Y.: Generalized algorithms for the identification of seismic ground excitations to building structures based on generalized Kalman filtering under unknown input. Adv. Struct. Eng. 10, 2163–2173 (2020)

    Google Scholar 

  32. Huang, J., Li, X., Zhang, F., Lei, Y.: Identification of joint structural state and earthquake input based on a generalized Kalman filter with unknown input. Mech. Syst. Signal Process. 151, 107362 (2021)

    Google Scholar 

  33. Lei, Y., Huang, J., Qi, C., et al.: Parallel substructure identification of linear and nonlinear structures using only partial output measurements. J. Eng. Mech. 148(7), 04022033 (2022)

    Google Scholar 

  34. Al-Hussein, A., Haldar, A.: Novel unscented Kalman filter for health assessment of structural systems with unknown input. J. Eng. Mech. 141(7), 04015012 (2015)

    Google Scholar 

  35. Lei, Y., Xia, D., Erazo, K., Nagarajaiah, S.: A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems. Mech. Syst. Signal Process. 127, 120–135 (2019)

    ADS  Google Scholar 

  36. Kirchner, M., Croes, J., Cosco, F., Desmet, W.: Exploiting input sparsity for joint state/input moving horizon estimation. Mech. Syst. Signal Process. 101, 237–253 (2018)

    ADS  Google Scholar 

  37. Liu, J., Yu, A., Chang, C., Ren, W., Zhang, J.: A new physical parameter identification method for shear frame structures under limited inputs and outputs. Adv. Struct. Eng. 24(4), 667 (2021)

    CAS  Google Scholar 

  38. Lei, Y., Lai, J., Huang, J., Qi, C.: A generalized extended Kalman particle filter with unknown input for nonlinear system-input identification under non-Gaussian measurement noises. Struct. Control. Health Monit. 29(12), 1–16 (2022)

    CAS  Google Scholar 

  39. Eftekhar Azam, S., Chatzi, E., Papadimitriou, C.: A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech. Syst. Signal Process. 60, 866–886 (2015)

    ADS  Google Scholar 

  40. Ma, Z., Choi, J., Sohn, H.: Real-time structural displacement estimation by fusing asynchronous acceleration and computer vision measurements. Comput. Aid. Civ. Infrastruct. Eng. 37(6), 688–703 (2021)

    Google Scholar 

  41. Ma, Z., Choi, J., Liu, P., Sohn, H.: Structural displacement estimation by fusing vision camera and accelerometer using hybrid computer vision algorithm and adaptive multi-rate Kalman filter. Autom. Constr. 140, 104338 (2022)

    Google Scholar 

  42. Huang. J.: Structural dynamic load identification based on Kalman filter based model driven and deep learning based data driven, pp. 41–42. Ph.D. Thesis. Xiamen University (2021)

  43. Zhou, S., Bao, Y., Li, H.: Optimal sensor placement based on substructure sensitivity analysis. J. Earthq. Eng. Eng. Vib. 34(4), 242–247 (2014)

    Google Scholar 

  44. Lin, J., Xu, Y., Zhan, S.: Experimental investigation on multi-objective multi-type sensor optimal placement for structural damage detection. Struct. Health Monit. Int. J. 18(3), 882–901 (2019)

    Google Scholar 

  45. Hartwig, R., Li, X., Wei, Y.: Representations for the Drazin inverse of a 2 × 2 block matrix. SIAM J. Matrix Anal. Appl. 27(3), 757–771 (2005)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the 111 Project of Hubei Province (Grant Number 2021EJD026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhi Li.

Ethics declarations

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The detailed derivation process of Eqs. (56) and (57)

Considering Eq. (35), The partial derivative of \({P}_{{\varvec{f}}}\) with respect to \({{\varvec{B}}}_{k+1}^{\text{opt}}\) is:

$$ \begin{aligned} \frac{{\partial P_{{\varvec{f}}} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} & = \frac{{\partial tr\left( {{\varvec{S}}_{k + 1} \tilde{\varvec{R}}_{k + 1} {\varvec{S}}_{k + 1}^{T} } \right)}}{{\partial \tilde{\varvec{R}}_{k + 1} }}:\frac{{\partial \tilde{\varvec{R}}_{k + 1} }}{{\partial \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} }}:\frac{{\partial \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} - 2\frac{{\partial tr\left[ {\left( {{\varvec{S}}_{k + 1} {\varvec{T}}_{k + 1} - {\mathbf{I}}} \right){\varvec{\varGamma}}_{k + 1}^{T} } \right]}}{{\partial {\varvec{T}}_{k + 1} }}:\frac{{\partial {\varvec{T}}_{k + 1} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} \\ & = 2{\varvec{H}}_{k + 1|k}^{T} {\varvec{S}}_{k + 1}^{T} \left\{ {{\varvec{S}}_{k + 1} {\varvec{H}}_{k + 1|k} \left[ {{\varvec{B}}_{k + 1}^{\text{opt}} \left( {\hat{\varvec{P}}_{k|k}^{{{\varvec{ff}}}} + {\varvec{Q}}_{k}^{u} } \right) - \left( {{\varvec{A}}_{k} \hat{\varvec{P}}_{k|k}^{{{\varvec{Zf}}}} + {\varvec{B}}_{k}^{zoh} \hat{\varvec{P}}_{k|k}^{{{\varvec{ff}}}} } \right)} \right] -{\varvec{\varGamma}}_{k + 1} } \right\} \\ \end{aligned} $$
(80)

Considering Eq. (45), the partial derivative of \({P}_{{\varvec{Z}}}\) with respect to \({{\varvec{B}}}_{k+1}^{\text{opt}}\) is:

$$ \begin{aligned} \frac{{\partial P_{{\varvec{Z}}} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} & = \frac{{\partial tr\left( {{\varvec{L}}_{k + 1} \tilde{\varvec{R}}_{k + 1} {\varvec{L}}_{k + 1}^{T} } \right)}}{{\partial \tilde{\varvec{R}}_{k} }}:\frac{{\partial \tilde{\varvec{R}}_{k + 1} }}{{\partial \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} }}:\frac{{\partial \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} \\ & \quad + \frac{{\partial tr\left( { - 2\varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} {\varvec{H}}_{k + 1|k}^{T} {\varvec{L}}_{k + 1}^{T} + \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} } \right)}}{{\varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k|k - 1}^{{{\varvec{ZZ}}}} }}:\frac{{\partial \varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{P} }_{k + 1|k}^{{{\varvec{ZZ}}}} }}{{\partial {\varvec{H}}_{k + 1|k}^{T} }} \\ & \quad - 2\frac{{\partial tr\left[ {\left( {{\varvec{L}}_{k + 1} {\varvec{T}}_{k + 1} - {\varvec{B}}_{k + 1}^{\text{opt}} } \right){\varvec{\varLambda}}_{k + 1}^{T} } \right]}}{{\partial {\varvec{T}}_{k + 1} }}:\frac{{\partial {\varvec{T}}_{k + 1} }}{{\partial {\varvec{B}}_{k + 1}^{\text{opt}} }} \\ & = 2\left( {{\varvec{L}}_{k + 1} {\varvec{H}}_{k + 1|k} - {\mathbf{I}}} \right)^{T} \left\{ {\left( {{\varvec{L}}_{k + 1} {\varvec{H}}_{k + 1|k} - {\mathbf{I}}} \right)\left[ {{\varvec{B}}_{k + 1}^{\text{opt}} \left( {\hat{\varvec{P}}_{k|k}^{{{\varvec{ff}}}} + {\varvec{Q}}_{k}^{u} } \right) - \left( {{\varvec{A}}_{k} \hat{\varvec{P}}_{k|k}^{{{\varvec{Zf}}}} + {\varvec{B}}_{k}^{zoh} \hat{\varvec{P}}_{k|k}^{{{\varvec{ff}}}} } \right)} \right] -{\varvec{\varLambda}}_{k + 1} } \right\} \\ \end{aligned} $$
(81)

Appendix 2: Theorem on the inverse of block matrix

Theorem: Let the square matrix \({\varvec{N}}=\left[\begin{array}{cc}{\varvec{A}}& {\varvec{B}}\\ {\varvec{C}}& {\varvec{D}}\end{array}\right]\) be invertible, and its sub-block square matrix \({\varvec{A}}\) is invertible, then \({{\varvec{E}}=\left({\varvec{D}}-{\varvec{C}}{{\varvec{A}}}^{-1}{\varvec{B}}\right)}^{-1}\) exists and the inverse matrix of \({\varvec{N}}\) is [45]:

$${{\varvec{N}}}^{-1}={\left[\begin{array}{cc}{\varvec{A}}& {\varvec{B}}\\ {\varvec{C}}& {\varvec{D}}\end{array}\right]}^{-1}=\left[\begin{array}{cc}{{\varvec{A}}}^{-1}+{{\varvec{A}}}^{-1}{\varvec{B}}{\varvec{E}}{\varvec{C}}{{\varvec{A}}}^{-1}& -{{\varvec{A}}}^{-1}{\varvec{B}}{\varvec{E}}\\ -{\varvec{E}}{\varvec{C}}{{\varvec{A}}}^{-1}& {\varvec{E}}\end{array}\right]$$
(82)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Lei, Y. & Li, X. An adaptive generalized extended Kalman filter for real-time identification of structural systems, state and input based on sparse measurement. Nonlinear Dyn 112, 5453–5476 (2024). https://doi.org/10.1007/s11071-023-09251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09251-7

Keywords

Navigation