Skip to main content
Log in

Nonlinear resonant response of a buckled beam coupled with a boundary massive oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study focuses on nonlinear modal resonant dynamics of a buckled beam coupled with a boundary massive oscillator. To reveal buckled beam–boundary oscillator coupling effect, extended Hamilton principle is employed to derive a dynamic model with geometric nonlinearity included, and direct multiple-scale method (i.e., attacking directly partial differential equations) is then applied to reduce the original infinite-dimensional beam–support coupled system, leading to nonlinear modulation equations characterizing reduced slow dynamics of the coupled system, by focusing on beam’s one-to-one internally resonant dynamics around its first buckled shape. Time history responses, frequency responses, and Poincaré mapping are employed to investigate stability/bifurcation of nonlinear forced coupled dynamics, with one-to-one internal resonance activated or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data in this study will be made available on reasonable request.

References

  1. Rega, G., Settimi, V., Lenci, S.: Chaos in one-dimensional structural mechanics. Nonlinear Dyn. 102, 785–834 (2020)

    Google Scholar 

  2. Lacarbonara, W.: A theoretical and experimental investigation of nonlinear vibrations of buckled beams. PhD thesis, Virginia Polytechnic Institute and State University (1997)

  3. Nayfeh, A.H., Lacarbonara, W., Chin, C.M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18, 253–273 (1999)

    MathSciNet  Google Scholar 

  4. Emam, S.A.: A theoretical and experimental study of nonlinear dynamics of buckled beams, PhD thesis. Virginia Polytechnic Institute and State University (2002)

  5. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35, 1–17 (2004)

    Google Scholar 

  6. Emam, S.A., Nayfeh, A.H.: Nonlinear responses of buckled beams to subharmonic-resonance excitations. Nonlinear Dyn. 35, 105–122 (2004)

    Google Scholar 

  7. Nayfeh, A.H., Emam, S.A.: Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn. 54, 395–408 (2008)

    MathSciNet  Google Scholar 

  8. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Nonlinear Mech. 52, 12–15 (2013)

    ADS  Google Scholar 

  9. Huang, J.L., Xiao, L.J., Zhu, W.D.: Investigation of quasi-periodic response of a buckled beam under harmonic base excitation with an “unexplained” sideband structure. Nonlinear Dyn. 100, 2103–2119 (2020)

    Google Scholar 

  10. Coaquira, J.C., Cardoso, D.C.T., Goncalves, P.B., Orlando, D.: Parametric instability and nonlinear oscillations of an FRP channel section column under axial load. Nonlinear Dyn. 103, 3557–3580 (2021)

    Google Scholar 

  11. Liu, C.R., Yu, K.P.: Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 100, 2141–2165 (2020)

    Google Scholar 

  12. Liu, C.R., Yu, K.P.: Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance. Nonlinear Dyn. 100, 95–117 (2020)

    Google Scholar 

  13. Bouna, H.S., Nbendjo, B.R.N., Woafo, P.: Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dyn. 100, 1125–1141 (2020)

    Google Scholar 

  14. Iurasov, V., Mattei, P.O.: Bistable nonlinear damper based on a buckled beam configuration. Nonlinear Dyn. 99, 1801–1822 (2019)

    Google Scholar 

  15. Alcheikh, N., Mbarek, S.B., Ouakad, H.M., Younis, M.I.: A highly sensitive and wide-range resonant magnetic micro-sensor based on a buckled micro-beam. Sens. Actuator Phys. 328(1), 112768 (2021)

    CAS  Google Scholar 

  16. Huguet, T., Lallart, M., Badel, A.: Bistable vibration energy harvester and SECE circuit: exploring their mutual influence. Nonlinear Dyn. 97, 485–501 (2019)

    Google Scholar 

  17. Derakhshani, M., Berfield, T.A., Murphy, K.D.: A component coupling approach to dynamic analysis of a buckled, bistable vibration energy harvester structure. Nonlinear Dyn. 96, 1429–1446 (2019)

    Google Scholar 

  18. Torteman, B., Kessler, Y., Liberzon, A., Krylov, S.: Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor. Nonlinear Dyn. 98, 3051–3065 (2019)

    Google Scholar 

  19. Lu, L., She, G.L., Guo, X.M.: Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection. Int. J. Mech. Sci. 199, 106428 (2021)

    Google Scholar 

  20. Emam, S.A., Lacarbonara, W.: A review on buckling and postbuckling of thin elastic beams. Eur. J. Mech. A/Solids. 92, 10449 (2022)

    MathSciNet  Google Scholar 

  21. Min, G.B., Eisley, J.G.: Nonlinear vibration of buckled beams. J. Eng. Ind. 94, 637 (1972)

    Google Scholar 

  22. McDonald, P.H., Jr.: Nonlinear dynamic coupling in a beam vibration. J. Appl. Mech. 22, 573–578 (2021)

    Google Scholar 

  23. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. Appl. Mech. 38, 467–476 (1971)

    ADS  Google Scholar 

  24. Kreider, W., Nayfeh, A.H.: Experimental investigation of single-mode responses in a fixed-fixed buckled beam. Nonlinear Dyn. 15, 155–177 (1998)

    Google Scholar 

  25. Lestari, W., Hanagud, S.: Nonlinear vibration of buckled beams: some exact solutions. Int. J. Solids Struct. 38, 4741–4757 (2001)

    Google Scholar 

  26. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Nonlinear Mech. 40, 987–1003 (2005)

    ADS  Google Scholar 

  27. Emam, S.A.: A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams. Compos. Struct. 90, 247–253 (2009)

    Google Scholar 

  28. Celebi, K., Yarimpabuc, D., Tutuncu, N.: Free vibration analysis of functionally graded beams using complementary functions method. Arch. Appl. Mech. 88, 34–47 (2018)

    Google Scholar 

  29. Pi, Y.L., Bradford, M.A., Tin-Loi, F.: Nonlinear analysis and buckling of elastically supported circular shallow arches. Int. J. Solids Struct. 44, 2401–2425 (2007)

    Google Scholar 

  30. Luongo, A., Rega, G., Vestroni, F.: On nonlinear dynamics of planar shear indeformable beams. J. Appl. Mech. 53, 619–624 (1986)

    ADS  Google Scholar 

  31. Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int. J. Solids Struct. 43, 5066–5084 (2006)

    Google Scholar 

  32. Lenci, S., Clementi, F., Rega, G.: A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint. Meccanica 51, 2589–2606 (2016)

    MathSciNet  Google Scholar 

  33. Lenci, S., Clementi, F., Kloda, L., Warminski, J., Rega, G.: Longitudinal–transversal internal resonances in Timoshenko beams with an axial elastic boundary condition. Nonlinear Dyn. 103, 3489–3513 (2021)

    Google Scholar 

  34. Lenci, S., Rega, G.: Nonlinear free vibrations of planar elastic beams: a unified treatment of geometrical and mechanical effects. Procedia IUTAM. 19, 35–42 (2016)

    Google Scholar 

  35. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Nonlinear Mech. 27, 233–250 (1992)

    ADS  Google Scholar 

  36. Guo, T.D., Kang, H.J., Wang, L.H., Zhao, Y.Y.: Cable dynamics under non-ideal support excitations: nonlinear dynamic interactions and asymptotic modelling. J. Sound Vib. 384, 253–272 (2016)

    ADS  Google Scholar 

  37. Guo, T.D., Kang, H.J., Wang, L.H., Liu, Q.J., Zhao, Y.Y.: Modal resonant dynamics of cables with a flexible support: a modulated diffraction problem. Mech. Syst. Signal Process. 106, 229–248 (2018)

    ADS  Google Scholar 

  38. Qiao, W.Z., Guo, T.D., Kang, H.J., Zhao, Y.Y.: An asymptotic study of nonlinear coupled vibration of arch-foundation structural system. Eur. J. Mech. A/Solids. 96, 104711 (2022)

    ADS  MathSciNet  Google Scholar 

  39. Qiao, W.Z., Guo, T.D., Kang, H.J., Zhao, Y.Y.: Nonlinear vibration analysis of a shallow arch coupled with an elastically constrained rigid body. Nonlinear Dyn. 111, 10769–10789 (2023)

    Google Scholar 

  40. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105, 1141–1190 (2021)

    Google Scholar 

  41. Mehmet, P.: A comuadratic and cubic nonlinearities. Mech. Res. Commun. 21, 203–208 (1994)

    Google Scholar 

  42. Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203–220 (1997)

    MathSciNet  Google Scholar 

  43. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    ADS  MathSciNet  Google Scholar 

  44. Howes, F.A.: Introduction to Perturbation Techniques. Wiley-Interscience, NewYork (1981)

    Google Scholar 

  45. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Nonlinear Mech. 38, 851–872 (2003)

    Google Scholar 

  46. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics (1987)

  47. Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical Continuation Methods for Dynamical Systems. Springer (2007)

    Google Scholar 

  48. Guo, T.D., Rega, G.: Reduced-order modelling of geometrically nonlinear structures. Part 2: correspondence and unified perspectives on different reduction techniques. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08745-8

    Article  Google Scholar 

Download references

Funding

This study is supported by the National Science Foundation of China under Grant Nos. 12372007, 11872176, 11972151, 12202109 and also by Guangxi Science & Technology Base and Talent Project under grant No. 2020AC19209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to the current article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The variational process of kinetic energy is as follows:

$$ \begin{aligned} \int_{{t_{1} }}^{{t_{2} }} {\delta T{\text{d}}\hat{t}} = & \int_{{t_{1} }}^{{t_{2} }} {\left\{ {\hat{m}\int_{0}^{l} {[\dot{\hat{w}}\delta \dot{\hat{w}}_{{}} } + \dot{\hat{u}}\delta \dot{\hat{u}}]d\hat{x} + \hat{M}\dot{\hat{g}}\delta \dot{\hat{g}}} \right\}} {\text{d}}\hat{t} = \int_{{t_{1} }}^{{t_{2} }} {\left\{ {\hat{m}\int_{0}^{l} {[\dot{\hat{w}}_{{}} {\text{d}}} \delta \hat{w}_{{}} + \dot{\hat{u}}{\text{d}}\delta \hat{u}]d\hat{x} + \hat{M}\dot{\hat{g}}{\text{d}}\delta \hat{g}} \right\}} \\ = & \hat{m}\int_{0}^{l} {[\left. {\dot{\hat{u}}\delta \hat{u}} \right|}_{{t_{1} }}^{{t_{2} }} - \int_{{t_{1} }}^{{t_{2} }} {\ddot{\hat{u}}} \delta \hat{u}{\text{d}}\hat{t}]{\text{d}}\hat{x} + \hat{m}\int_{0}^{l} {[\left. {\dot{\hat{w}}_{{}} \delta \hat{w}_{{}} } \right|}_{{t_{1} }}^{{t_{2} }} - \int_{{t_{1} }}^{{t_{2} }} {\ddot{\hat{w}}_{{}} } \delta \hat{w}_{{}} {\text{d}}\hat{t}]d\hat{x} + \left. {\hat{M}\dot{\hat{g}}{\text{d}}\delta \hat{g}} \right|_{{t_{1} }}^{{t_{2} }} - \int_{{t_{1} }}^{{t_{2} }} {\hat{M}\ddot{\hat{g}}\delta \hat{g}{\text{d}}\hat{t}} \\ = & - \int_{{t_{1} }}^{{t_{2} }} {\left\{ {m\int_{0}^{l} {(\ddot{\hat{w}}_{{}} } \delta \hat{w}_{{}} + \ddot{\hat{u}}\delta \hat{u})d\hat{x} + \hat{M}\ddot{\hat{g}}\delta \hat{g}} \right\}} {\text{d}}\hat{t} \\ \end{aligned} $$
(46)

Also, the variational process of potential energy is as follows:

$$ \begin{aligned} \int_{{t_{1} }}^{{t_{2} }} {\delta U{\text{d}}\hat{t}} = & \int_{{t_{1} }}^{{t_{2} }} {[EA\int_{0}^{l} {(\hat{u^{\prime}}} } + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )(\delta \hat{u}^{\prime } + \hat{w^{\prime}}_{{}} \delta \hat{w^{\prime}}_{{}} ){\text{d}}\hat{x} + EI\int_{0}^{l} {\hat{w^{\prime\prime}}_{{}} } \delta \hat{w^{\prime\prime}}_{{}} {\text{d}}x - \hat{P}\hat{u}(0,\hat{t}) + \hat{K}\hat{g}\delta \hat{g}]{\text{d}}\hat{t} \\ = & \underbrace {{EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{u^{\prime}}} } + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )\delta \hat{u}^{\prime } {\text{d}}\hat{x}{\text{d}}\hat{t}}}_{(1)} \, + \underbrace {{EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {(\hat{u}^{\prime } } } + \frac{1}{2}w^{\prime 2} )\hat{w^{\prime}}\delta \hat{w^{\prime}}{\text{d}}\hat{x}{\text{d}}\hat{t}}}_{(2)} \, \\ & + \underbrace {{EI\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {\hat{w^{\prime\prime}}_{{}} } } \delta \hat{w^{\prime\prime}}_{{}} {\text{d}}\hat{x}{\text{d}}\hat{t}}}_{(3)} \, - \int_{{t_{1} }}^{{t_{2} }} {\hat{P}\delta \hat{u}(0,\hat{t})} {\text{d}}\hat{t} + \int_{{t_{1} }}^{{t_{2} }} {\hat{K}\hat{g}\delta \hat{g}} {\text{d}}\hat{t} \\ \end{aligned} $$
(47)

The details above are given below

$$ \begin{aligned} (1){ = } & EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{u}^{\prime } } } + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} ){\text{d}}\delta \hat{u}{\text{d}}\hat{t} \\ = & EA\int_{{t_{1} }}^{{t_{2} }} [ (\hat{u^{\prime}} + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )\left. {\delta \hat{u}} \right|_{0}^{l} - \int_{0}^{l} {(\hat{u^{\prime}} + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )^{\prime}} \delta \hat{u}{\text{d}}\hat{x}]{\text{d}}\hat{t} \\ = & EA\int_{{t_{1} }}^{{t_{2} }} [ (\hat{u^{\prime}} + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )\left. {\delta \hat{u}} \right|_{0}^{l} {\text{d}}\hat{t} - EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{u^{\prime}}} } + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )^{\prime}\delta \hat{u}{\text{d}}\hat{x}{\text{d}}\hat{t} \\ = & \left. {EA\int_{{t_{1} }}^{{t_{2} }} [ (\hat{u^{\prime}} + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )} \right|_{{\hat{x} = l}} \delta \hat{u}(l,\hat{t}){\text{d}}\hat{t} - \left. {EA\int_{{t_{1} }}^{{t_{2} }} [ (\hat{u^{\prime}} + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )} \right|_{{\hat{x} = 0}} \delta \hat{u}(0,\hat{t}){\text{d}}\hat{t} \\ & - EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{u^{\prime}}} } + \frac{1}{2}\hat{w^{\prime}}_{{}}^{2} )^{\prime}\delta \hat{u}{\text{d}}\hat{x}{\text{d}}\hat{t} \\ \end{aligned} $$
(48)
$$ \begin{aligned} (2){ = } & EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{u^{\prime}}} } + \frac{1}{2}\hat{w}^{\prime 2} )\hat{w^{\prime}}_{{}} {\text{d}}\delta \hat{w}{\text{d}}\hat{t} \\ = & EA\left. {\int_{{t_{1} }}^{{t_{2} }} {[(\hat{u}^{\prime } + \frac{1}{2}\hat{w}^{\prime 2} \hat{w^{\prime}}_{{}}^{2} )} \hat{w^{\prime}}_{{}} \delta \hat{w}_{{}} } \right|_{0}^{l} - \int_{0}^{l} {[(\hat{u^{\prime}} + \frac{1}{2}\hat{w}^{\prime 2} )} \hat{w}^{\prime } ]^{\prime}\delta \hat{w}{\text{d}}\hat{x}]{\text{d}}\hat{t} \\ = & - EA\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {[(\hat{u}^{\prime } } } + \frac{1}{2}\hat{w}^{\prime 2} )\hat{w^{\prime}}_{{}} ]^{\prime}\delta \hat{w}{\text{d}}\hat{x}{\text{d}}\hat{t} \\ \end{aligned} $$
(49)
$$ \begin{aligned} (3){ = } & EI\int_{{{\text{t}}_{1} }}^{{t_{2} }} {\int_{0}^{l} {\hat{w}^{\prime \prime } } d\delta \hat{w}^{\prime } {\text{d}}\hat{t}} = EI\left. {\int_{{t_{1} }}^{{t_{2} }} {[\hat{w}^{\prime \prime } } \delta \hat{w}^{\prime } } \right|_{0}^{l} - \int_{0}^{l} {\hat{w}^{\prime \prime \prime } } \delta \hat{w}^{\prime } {\text{d}}\hat{x}]{\text{d}}\hat{t} = - EI\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {\hat{w}^{\prime \prime \prime } } \delta \hat{w}^{\prime } {\text{d}}\hat{x}{\text{d}}\hat{t}} \\ = & - EI\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {\hat{w}^{\prime \prime \prime } } {\text{d}}\delta \hat{w}} {\text{d}}\hat{t} = - EI\left. {\int_{{t_{1} }}^{{t_{2} }} {[\hat{w}^{\prime \prime \prime } } \delta \hat{w}} \right|_{0}^{l} - \int_{0}^{l} {\hat{w}^{\prime \prime \prime \prime } } \, \delta \hat{w}{\text{d}}\hat{x}]{\text{d}}\hat{t} \\ = & EI\int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {\hat{w}^{\prime \prime \prime \prime } } \, \delta \hat{w}} {\text{d}}\hat{x}{\text{d}}\hat{t} \\ \end{aligned} $$
(50)

In a similar way, the variational process of virtual work is as follows:

$$ \begin{aligned} \int_{{t_{1} }}^{{t_{2} }} {\delta W{\text{d}}\hat{t}} = & \int_{{t_{1} }}^{{t_{2} }} {\left\{ {\int_{0}^{l} {(\hat{f}(\hat{x})} \cos \hat{\Omega }\hat{t} - 2\hat{c}\dot{\hat{w}}_{{}} )\delta \hat{w}_{{}} {\text{d}}\hat{x} - 2\hat{\nu }\dot{\hat{g}}\delta \hat{g}} \right\}{\text{d}}\hat{t}} \\ = & \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{l} {(\hat{f}(\hat{x})} \cos \hat{\Omega }\hat{t} - 2\hat{c}\dot{\hat{w}}_{{}} )\delta \hat{w}_{{}} {\text{d}}\hat{x}{\text{d}}\hat{t}} - \int_{{t_{1} }}^{{t_{2} }} {2\hat{\nu }\dot{\hat{g}}\delta \hat{g}{\text{d}}\hat{t}} \\ \end{aligned} $$
(51)

Note that one key constraint above is \(\delta \hat{g}\left( {\hat{t}} \right) = \delta \hat{u}\left( {l,\hat{t}} \right)\), which is due to the beam-support interface connection condition \(\hat{u}\left( {l,\hat{t}} \right) = \hat{g}\left( {\hat{t}} \right)\).

Appendix B

The buckled beam’s linear mode shapes \(\phi_{k} (x)\), around the first buckled mode \(y(x) = 0.5 \times b(1 - \cos 2\pi x),\;\;b = {{2\sqrt {P - 4\pi^{2} } } \mathord{\left/ {\vphantom {{2\sqrt {P - 4\pi^{2} } } \pi }} \right. \kern-0pt} \pi }\), are derived by solving the following boundary-value problem [7]

$$ \begin{gathered} \ddot{w} + w^{iv} + \lambda^{2} w^{\prime\prime} - y^{\prime\prime}\int_{0}^{1} {y^{\prime } w^{\prime } } {\text{d}}x = 0,\quad \lambda^{2} = 4\pi^{2} \hfill \\ x = 0:w = w^{\prime } = 0; \, x = 1:w = w^{\prime } = 0 \hfill \\ \end{gathered} $$
(52)

Explicitly, one has

$$ \phi_{k} (x) = c_{1} \sin \lambda x + c_{2} cos\lambda x + c_{3} \sinh \mu x + c_{4} \cosh \mu x + c_{5} \cos 2\pi x $$
(53)

where

$$ \Gamma = \sqrt {2\pi^{2} + \sqrt {4\pi^{4} + \omega_{k}^{2} } } ,\quad \mu = \sqrt { - 2\pi^{2} + \sqrt {4\pi^{4} + \omega_{k}^{2} } } $$
(54)

the \(c_{i}\) and \(\omega_{k}\) in the mode shapes are solutions to the following algebraic eigenvalue problem [7]:

$$ \begin{gathered} c_{2} + c_{4} + c_{5} = 0 \hfill \\ c_{1} \sin \Gamma + c_{2} cos\Gamma + c_{3} \sinh \mu + c_{4} \cosh \mu + c_{5} = 0 \hfill \\ c_{1} \Gamma + c_{3} \mu = 0 \hfill \\ c_{1} \Gamma \cos \Gamma - c_{2} \Gamma \sin \Gamma + c_{3} \mu \cosh \mu + c_{4} \mu \sinh \mu = 0 \hfill \\ 4b^{2} \Gamma^{3} \pi^{4} (2c_{1} \sin \frac{{\Gamma^{2} }}{4} + c_{2} \sin \Gamma ) + 4b^{2} \mu^{3} \pi^{4} (2c_{3} \sinh \frac{{\mu^{2} }}{4} + c_{4} \sinh \mu ) \hfill \\ + c_{5} \omega_{k}^{2} (2b^{2} \pi^{4} - \omega_{k}^{2} ) = 0 \hfill \\ \end{gathered} $$
(55)

Typical mode shapes are depicted in Fig. 15

Fig. 15
figure 15

An illustration of typical modal shape functions (the lowest four modes) of the clamped–clamped buckled beam when b = 6.21

.

Appendix C

The shape functions used in Eq. (31) are governed by the following linear boundary-value problems (BVP)

$$ \begin{gathered} - 4\omega_{m}^{2} \Psi_{mm} + L[\Psi_{mm} ] = G_{2} [\phi_{m} ,\phi_{m} ] \hfill \\ - 4\omega_{n}^{2} \Psi_{nn} + L[\Psi_{nn} ] = G_{2} [\phi_{n} ,\phi_{n} ] \hfill \\ - (\omega_{m} + \omega_{n} )^{2} \Psi_{mn} + L[\Psi_{mn} ] = G_{2} [\phi_{m} ,\phi_{n} ] + G_{2} [\phi_{n} ,\phi_{m} ] \hfill \\ L[\chi_{mm} ] = G_{2} [\phi_{m} ,\phi_{m} ] \hfill \\ L[\chi_{nn} ] = G_{2} [\phi_{n} ,\phi_{n} ] \hfill \\ - (\omega_{m} - \omega_{n} )^{2} \chi_{mn} + L[\chi_{mn} ] = G_{2} [\phi_{m} ,\phi_{n} ] + G_{2} [\phi_{n} ,\phi_{m} ] \hfill \\ \end{gathered} $$
(56)

with boundary conditions \(\Psi_{ij} (0) = \Psi_{ij} (1) = 0, \, \chi_{ij} (0) = \chi_{ij} (1) = 0\). Recall that the linear structural operator is defined as \(L[w] = w^{iv} + 4\pi^{2} w^{\prime \prime } - y^{\prime\prime}\int_{0}^{1} {y^{\prime } w^{\prime } } {\text{d}}x\).

Appendix D

$$ \begin{aligned} \Gamma_{mm} (x) = & 3G_{3} [\phi_{m} ,\phi_{m} ,\phi_{m} ] + G_{2} [\psi_{mm} ,\phi_{m} ] + G_{2} [\phi_{m} ,\psi_{mm} ] + 2G_{2} [\phi_{m} ,\chi_{mm} ] + 2G_{2} [\chi_{mm} ,\phi_{m} ] \\ \Gamma_{nn} (x) = & 3G_{3} [\phi_{n} ,\phi_{n} ,\phi_{n} ] + G_{2} [\psi_{nn} ,\phi_{n} ] + G_{2} [\phi_{n} ,\psi_{nn} ] + 2G_{2} [\phi_{n} ,\chi_{nn} ] + 2G_{2} [\chi_{nn} ,\phi_{n} ] \\ \Gamma_{mn} (x) = & 2G_{3} [\phi_{m} ,\phi_{m} ,\phi_{n} ] + 2G_{3} [\phi_{n} ,\phi_{m} ,\phi_{m} ] + 2G_{3} [\phi_{m} ,\phi_{n} ,\phi_{m} ] + 2G_{2} [\chi_{mm} ,\phi_{n} ] \\ & + 2G_{2} [\phi_{n} ,\chi_{mm} ] + G_{2} [\chi_{mn} ,\phi_{m} ] + G_{2} [\phi_{m} ,\chi_{mn} ] + G_{2} [\psi_{mn} ,\phi_{m} ] + G_{2} [\phi_{m} ,\psi_{mn} ] \\ \Gamma_{nm} (x) = & 2G_{3} [\phi_{m} ,\phi_{n} ,\phi_{n} ] + 2G_{3} [\phi_{n} ,\phi_{m} ,\phi_{n} ] + 2G_{3} [\phi_{n} ,\phi_{n} ,\phi_{m} ] + 2G_{2} [\chi_{nn} ,\phi_{m} ] \\ & + 2G_{2} [\phi_{m} ,\chi_{nn} ] + G_{2} [\chi_{mn} ,\phi_{n} ] + G_{2} [\phi_{n} ,\chi_{mn} ] + G_{2} [\psi_{mn} ,\phi_{n} ] + G_{2} [\phi_{n} ,\psi_{mn} ] \\ \Gamma_{m} (x) = & G_{3} [\phi_{n} ,\phi_{n} ,\phi_{m} ] + G_{3} [\phi_{m} ,\phi_{n} ,\phi_{n} ] + G_{3} [\phi_{n} ,\phi_{m} ,\phi_{n} ] + G_{2} [\phi_{n} ,\chi_{mn} ] \\ & + G_{2} [\chi_{mn} ,\phi_{n} ] + G_{2} [\phi_{m} ,\chi_{nn} ] + G_{2} [\chi_{nn} ,\phi_{m} ] + G_{2} [\phi_{n} ,\psi_{mn} ] + G_{2} [\psi_{mn} ,\phi_{n} ] \\ \Gamma_{n} (x) = & G_{3} [\phi_{n} ,\phi_{m} ,\phi_{m} ] + G_{3} [\phi_{m} ,\phi_{n} ,\phi_{m} ] + G_{3} [\phi_{m} ,\phi_{m} ,\phi_{n} ] + G_{2} [\phi_{m} ,\chi_{mn} ] \\ & + G_{2} [\chi_{mn} ,\phi_{m} ] + G_{2} [\phi_{n} ,\chi_{mm} ] + G_{2} [\chi_{mm} ,\phi_{n} ] + G_{2} [\phi_{m} ,\psi_{mn} ] + G_{2} [\psi_{mn} ,\phi_{m} ] \\ \end{aligned} $$
(57)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guo, T., Qiao, W. et al. Nonlinear resonant response of a buckled beam coupled with a boundary massive oscillator. Nonlinear Dyn 112, 3217–3240 (2024). https://doi.org/10.1007/s11071-023-09239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09239-3

Keywords

Navigation