Skip to main content
Log in

Event-triggered control for p-normal uncertain nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When dealing with microprocessors with limited resources and networks with limited bandwidth, the research of event triggering technology becomes more and more important. In order to save communication resources, this paper is concerned with the event-triggered control problem for a class of p-normal uncertain nonlinear systems with unknown growth rate. At first, an event-triggered controller is designed for the nominal system by adding a power integrator technique. Then, a novel dynamic gain is introduced into the proposed event-triggered controller to render lower-triangular uncertain nonlinear systems globally asymptotically stable. At the same time, Zeno phenomenon is excluded. Finally, the proposed method is extended to event-triggered control of p-normal upper-triangular uncertain nonlinear systems. A practical circuit system and a numerical simulation are given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  2. Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995)

    Book  Google Scholar 

  3. Marino, R., Tomei, P.: Nonlinear Control Design. Prentice-Hall, New Jersey (1995)

    Google Scholar 

  4. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New Jersey (1995)

    Google Scholar 

  5. Mazenc, F., Praly, L., Dayawansa, W.: Global stabilization by output feedback: examples and counterexamples. Syst. Control Lett. 23(2), 119–125 (1994)

    Article  MathSciNet  Google Scholar 

  6. Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Syst. Control Lett. 17(5), 357–362 (1991)

    Article  MathSciNet  Google Scholar 

  7. Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Huang, J.: Global output feedback stabilization for uncertain nonlinear systems with output dependent incremental rate. In: Proceedings of the 2004 American Control Conference, pp. 3047–3052 (2004)

  9. Qian, C.: A homogeneous domination approach for global output stabilization of a class of nonlinear systems. In: Proceedings of the 2005 American Control Conference, pp. 4708–4715 (2005)

  10. Salehi, S., Shahrokhi, M.: Adaptive output feedback tracking controller for a class of uncertain strict feedback nonlinear systems in the absence of state measurements. Int. J. Syst. Sci. 43(2), 201–210 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lei, H., Lin, W.: Universal output feedback control of nonlinear systems with unknown growth rate. Automatica 42(10), 1783–1789 (2006)

    Article  MathSciNet  Google Scholar 

  12. Liang, L., Yan, X., Shen, T.: Global output-feedback adaptive stabilization for uncertain nonlinear systems with polynomial growth nonlinearities. Syst. Control Lett. 165, 105269 (2022)

    Article  MathSciNet  Google Scholar 

  13. Zhai, J., Liu, C.: Global dynamic output feedback stabilization for a class of high-order nonlinear systems. Int. J. Robust Nonlinear Control 32(3), 1828–1843 (2022)

    Article  MathSciNet  Google Scholar 

  14. Astrom, K., Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, pp. 5006–5011 (1999)

  15. Arzen, K.: A simple event-based PID controller. In: Proceedings of the 14th IFAC World Congress, pp. 8687–8692 (1999)

  16. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  17. Girard, A.: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60(7), 1992–1997 (2015)

    Article  MathSciNet  Google Scholar 

  18. Yang, P., Chen, X., Zhao, X., Song, J.: Observer-based event-triggered tracking control for large-scale high order nonlinear uncertain systems. Nonlinear Dyn. 105, 3299–3321 (2021)

    Article  Google Scholar 

  19. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 64(1), 290–297 (2019)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Zheng, W., Zhang, H.: Dynamic event-based control of nonlinear stochastic systems. IEEE Trans. Autom. Control 62(12), 6544–6551 (2017)

    Article  MathSciNet  Google Scholar 

  21. Cheng, Y., Zhang, J., Du, H., Wen, G., Lin, X.: Global event-triggered output feedback stabilization of a class of nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 51(7), 4040–4047 (2021)

    Article  Google Scholar 

  22. Ling, S., Wang, H., Liu, P.: Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems. Nonlinear Dyn. 100, 3381–3397 (2020)

    Article  Google Scholar 

  23. Wang, W., Li, Y.: Observer-based event-triggered adaptive fuzzy control for leader-following consensus of nonlinear strict-feedback systems. IEEE Trans. Cybern. 51(4), 2131–2141 (2021)

    Article  MathSciNet  PubMed  Google Scholar 

  24. Shu, F., Zhai, J.: Dynamic event-triggered tracking control for a class of p-normal nonlinear systems. IEEE Trans. Circuits Syst. I Reg. Pap. 68(2), 808–817 (2021)

    Article  MathSciNet  Google Scholar 

  25. Shu, F., Zhai, J.: Adaptive event-triggered control for switched p-normal nonlinear systems via output feedback. IEEE Trans. Cybern. 52(7), 7060–7068 (2022)

    Article  PubMed  Google Scholar 

  26. Chang, Y., Zhang, X., Liu, S., Kong, L.: Event-triggered output feedback control for feedforward nonlinear systems with unknown measurement sensitivity. Nonlinear Dyn. 104, 3781–3791 (2021)

    Article  Google Scholar 

  27. Deng, C., Wen, C., Wang, W., Li, X., Yue, D.: Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication. IEEE Trans. Autom. Control 68(2), 1176–1183 (2023)

    Article  MathSciNet  Google Scholar 

  28. Li, F., Liu, Y.: Adaptive event-triggered output-feedback controller for uncertain nonlinear systems. Automatica 117, 109006 (2020)

    Article  MathSciNet  Google Scholar 

  29. Koo, M., Choi, H., Lim, J.: Global regulation of a class of uncertain nonlinear systems by switching adaptive controller. IEEE Trans. Autom. Control 55(12), 2822–2827 (2010)

    Article  MathSciNet  Google Scholar 

  30. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer, Berlin (2005)

    Book  Google Scholar 

  31. Polendo, J., Qian, C.: A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. Int. J. Robust Nonlinear Control 17(7), 605–629 (2007)

    Article  MathSciNet  Google Scholar 

  32. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Adaptive compensation for actuator failures with event-triggered input. Automatica 85, 129–136 (2017)

    Article  MathSciNet  Google Scholar 

  33. Yu, H., Chen, T.: On Zeno behavior in event-triggered finite-time consensus of multiagent systems. IEEE Trans. Autom. Control 66(10), 4700–4714 (2021)

    Article  MathSciNet  Google Scholar 

  34. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  35. Lander, C.: Power Electronics. McGraw-Hill, New York (1987)

    Google Scholar 

  36. Zhai, J.: Adaptive finite-time control for a class of p-normal nonlinear systems. IEEE Trans. Circuits Syst. II Exp. Brief 70(2), 705–709 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (62373096) and Natural Science Foundation of Jiangsu Province (BK20211162)

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Zhai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, a generic constant c is used to represent some positive constant values. It may be different in different places.

Proof of Proposition 1:

From the construction of \(W_k\), one has

$$\begin{aligned} \sum _{i=1}^{k-1}\frac{\partial W_k}{\partial {x}_i} x_{i+1}^{p_i}&\le c\sum _{i=1}^{k-1} |\xi _k|^{\frac{2\mu -r_k-\tau }{\alpha }-1}|x_k-x_k^{*}|\nonumber \\&\quad \big |\frac{\partial {x}_k^{*\alpha /r_k}}{\partial x_i}x_{i+1}^{p_i}\big | \nonumber \\&\le c\sum _{i=1}^{k-1}|\xi _k|^{\frac{2\mu -\tau -\alpha }{\alpha }}\big |\frac{\partial {x}_k^{*\alpha /r_k}}{\partial x_i}x_{i+1}^{p_i}\big |.\nonumber \\ \end{aligned}$$
(A1)

From (10) and using Young’s inequality, it can be seen that

$$\begin{aligned}&\big |\frac{\partial x_k^{*\alpha /r_k}}{\partial x_i}x_{i+1}^{p_i}\big | =\beta _{k-1}^{\alpha /r_k}\big |\frac{\partial \xi _{k-1}}{\partial x_i}\big |\big |x_{i+1}^{p_i}\big |\nonumber \\&\quad =\beta _{k-1}^{\alpha /r_k}\big |\frac{\partial x_{k-1}^{*\alpha /r_{k-1}}}{\partial x_i}\big |\big |x_{i+1}^{p_i}\big |=\cdots \nonumber \\ {}&\quad =\beta _{k-1}^{\alpha /r_k}\dots \beta _{i+1}^{\alpha /r_{i+2}}\big |\frac{\partial x_{i+1}^{*\alpha /r_{i+1}}}{\partial x_i}\big |\big |x_{i+1}^{p_i}\big |\nonumber \\&\quad =\frac{\alpha \beta _{k-1}^{\alpha /r_{k}}\dots \beta _i^{\alpha /r_{i+1}}}{r_i}\big |x_i^{\frac{\alpha }{r_i}-1}\big |\big |x_{i+1}^{p_i}\big |\nonumber \\&\quad =\frac{\alpha \beta _{k-1}^{\alpha /r_{k}}\dots \beta _i^{\alpha /r_{i+1}}}{r_i}\big |\xi _i-\beta _{i-1}^{\alpha /r_i}\xi _{i-1}\big |^{1-\frac{r_i}{\alpha }}\nonumber \\&\qquad \times \big |\xi _{i+1}-\beta _{i}^{\alpha /r_{i+1}}\xi _i\big |^{\frac{r_{i+1}p_i}{\alpha }}\nonumber \\&\quad \le c\big (|\xi _{i-1}|^\frac{\alpha +\tau }{\alpha }+|\xi _i|^\frac{\alpha +\tau }{\alpha }+|\xi _{i+1}|^\frac{\alpha +\tau }{\alpha }\big ). \end{aligned}$$
(A2)

Substituting (A2) into (A1) and using Young’s inequality, one has

$$\begin{aligned} \sum _{i=1}^{k-1}\frac{\partial W_k}{\partial x_i}x_{i+1}^{p_i}&\le \frac{1}{2}\sum _{i=1}^{k-1}\xi _i^\frac{2\mu }{\alpha }+\hat{c}_1\xi _k^\frac{2\mu }{\alpha } \end{aligned}$$
(A3)

with a constant \({\hat{c}}_1>0\).

Proof of Proposition 2:

By Lemma 3, one has

$$\begin{aligned} |x_{i-1}-{\hat{x}}_{i-1}|&=|(x_{i-1}^{p_{i-2}})^{\frac{1}{p_{i-2}}}-({\hat{x}}_{i-1}^{p_{i-2}})^{\frac{1}{p_{i-2}}}|\nonumber \\&\le 2^{1-\frac{1}{p_{i-2}}}|e_{i-1}|^{\frac{r_{i-1}}{\alpha }}. \end{aligned}$$
(A4)

From (10), one has

$$\begin{aligned}&|x_i|^{\frac{r_{i-1}}{r_i}}\le c(|\xi _i|^{\frac{r_{i-1}}{\alpha }}+|\xi _{i-1}|^{\frac{r_{i-1}}{\alpha }}),\nonumber \\&|x_{i+1}^{p_i}|\le c(|\xi _{i+1}|^{\frac{r_{i+1}p_i}{\alpha }}+|\xi _{i}|^{\frac{r_{i+1}p_i}{\alpha }}). \end{aligned}$$
(A5)

If \(\tau >0\), then \(\frac{r_{i-1}}{r_ip_{i-1}}=\frac{r_{i-1}}{r_{i-1}+\tau }<1\). Then, we have

$$\begin{aligned} |(x_i^{p_{i-1}})^{\frac{r_{i-1}}{r_i p_{i-1}}}-({\hat{x}}_i^{p_{i-1}})^{\frac{r_{i-1}}{r_i p_{i-1}}}|\le 2^{1-\frac{r_{i-1}}{r_ip_{i-1}}}|e_i|^{\frac{r_{i-1}}{\alpha }}. \end{aligned}$$
(A6)

If \(\tau \le 0\), then \(\frac{r_{i-1}}{r_ip_{i-1}}=\frac{r_{i-1}}{r_{i-1}+\tau }\ge 1\). By Lemma 3, one has

$$\begin{aligned} |(x_i^{p_{i-1}})^{\frac{r_{i-1}}{r_i p_{i-1}}}{-}({\hat{x}}_i^{p_{i-1}})^{\frac{r_{i-1}}{r_i p_{i-1}}}|{\le } c(|e_i|^{\frac{r_{i-1}}{\alpha }}{+}|x_i|^{\frac{r_{i{-}1}}{r_i}}). \end{aligned}$$
(A7)

From the above two cases, one has

$$\begin{aligned}&\rho _i x_i^{\rho _i-1}\big (x_i^{\frac{r_{i-1}}{r_i}}-\zeta _i\big )x_{i+1}^{p_i}\nonumber \\&\le c\big (|\xi _i|^\frac{(\rho _i-1)r_i}{\alpha }+|\xi _{i-1}|^\frac{(\rho _i-1)r_i}{\alpha }\big )\big (|\xi _{i+1}|^{\frac{r_{i+1}p_i}{\alpha }}+|\xi _{i}|^{\frac{r_{i+1}p_i}{\alpha }}\big )\nonumber \\&\quad \times \big (|e_i|^{\frac{r_{i-1}}{\alpha }}+|\xi _i|^{\frac{r_{i-1}}{\alpha }}+|\xi _{i-1}|^{\frac{r_{i-1}}{\alpha }}+l_{i-1}|e_{i-1}|^{\frac{r_{i-1}}{\alpha }}\big )\nonumber \\&\le \frac{1}{12}\sum _{j=i-1}^{i+1}\xi _j^\frac{2\mu }{\alpha }+\alpha _i e_i^\frac{2\mu }{\alpha }+g_i(l_{i-1})e_{i-1}^\frac{2\mu }{\alpha } \end{aligned}$$
(A8)

where \(\alpha _i>0\) and \(g_i\) is a continuous function of \(l_{i-1}\) with \(g_2(\cdot )=0\).

Proof of Proposition 3:

From the definition of \(e_i\) and using Lemma 3, one has

$$\begin{aligned}&-l_{i-1}e_i^\frac{r_i p_{i-1}}{\alpha }\big (x_i^{\rho _i}-{\hat{x}}_i^{\rho _i}\big )\nonumber \\ {}&\quad {=}{-}l_{i-1}(x_i^{p_{i-1}}{-}{\hat{x}}_i^{p_{i-1}})\big ((x_i^{p_{i-1}})^{\frac{\rho _i}{p_{i-1}}}{-}({\hat{x}}_i^{p_{i{-}1}})^{\frac{\rho _i}{p_{i{-}1}}}\big )\nonumber \\&\quad \le -l_{i-1}2^{1-\frac{\rho _i}{p_{i-1}}}(x_i^{p_{i-1}}-{\hat{x}}_i^{p_{i-1}})^{\frac{\rho _i}{p_{i-1}}+1}\nonumber \\&\quad :=-l_{i-1}m_i e_i^\frac{2\mu }{\alpha } \end{aligned}$$
(A9)

where \(m_i=2^{1-\rho _i/p_{i-1}}\).

Proof of Proposition 4:

From the definitions of \(\rho _i\) and \(r_i\), one has \(r_i\rho _i/r_{i-1}>1\). By Lemma 3, from (21) one has

$$\begin{aligned}&-l_{i-1}e_i^\frac{r_i p_{i-1}}{\alpha }\big ({\hat{x}}_i^{\rho _i}-\zeta _i^{\frac{r_i \rho _i}{r_{i-1}}}\big )\nonumber \\ {}&\quad \le l_{i-1}|e_i|^\frac{r_ip_{i-1}}{\alpha }|(\eta _i+l_{i-1}{\hat{x}}_{i-1})^{\frac{r_i\rho _i}{r_{i-1}}}\nonumber \\&\qquad -(\eta _i+l_{i-1}x_{i-1})^{\frac{r_i\rho _i}{r_{i-1}}}|\nonumber \\&\quad \le c l_{i-1}^2|e_i|^\frac{r_ip_{i-1}}{\alpha }|e_{i-1}|^{\frac{r_{i-1}}{\alpha }}\nonumber \\&\qquad \times \big (l_{i-1}^{\frac{r_i\rho _i-r_{i-1}}{r_{i-1}}}|e_{i-1}|^{\frac{r_i\rho _i-r_{i-1}}{\alpha }}+|{\hat{x}}_i|^{\frac{r_i\rho _i-r_{i-1}}{r_i}}\big ). \end{aligned}$$
(A10)

From the definition of \(e_i\) and (10), one has

$$\begin{aligned} |{\hat{x}}_i|^{p_{i-1}}&=|(\xi _i-\beta _{i-1}^{\alpha /r_i}\xi _{i-1})^{\frac{r_ip_{i-1}}{\alpha }}-e_i^{\frac{r_ip_{i-1}}{\alpha }}|\nonumber \\&\le c(|\xi _i|^{\frac{r_ip_{i-1}}{\alpha }}+|\xi _{i-1}|^{\frac{r_ip_{i-1}}{\alpha }}+|e_i|^{\frac{r_ip_{i-1}}{\alpha }}). \end{aligned}$$
(A11)

Substituting (A11) into (A10) and using Young’s inequality, one has

$$\begin{aligned}&-l_{i-1}e_i^\frac{r_i p_{i-1}}{\alpha }\big ({\hat{x}}_i^{\rho _i}-\zeta _i^{\frac{r_i \rho _i}{r_{i-1}}}\big )\nonumber \\&\quad \le e_i^\frac{2\mu }{\alpha }+\frac{1}{16}(\xi _{i-1}^\frac{2\mu }{\alpha }+\xi _i^\frac{2\mu }{\alpha })+h_i(l_{i-1})e_{i-1}^\frac{2\mu }{\alpha } \end{aligned}$$
(A12)

where \(h_i(\cdot )\) is a continuous function of \(l_{i-1}\). It should be pointed out that \({\hat{x}}_i^{\rho _i}-\zeta _i^{r_i\rho _i/r_{i-1}}=0\) for \(i=2\).

Proof of Proposition 5:

From (22) and the definition of \(e_i\), one has

$$\begin{aligned} |u({\hat{x}})|&\le c(|{\hat{x}}_n|^{\frac{\alpha }{r_n}}+\dots +|{\hat{x}}_2|^{\frac{\alpha }{r_2}}+|x_1|^{\frac{\alpha }{r_1}})^\frac{r_{n+1}}{\alpha }\nonumber \\&\le c(\big |x_n^{p_{n-1}}-e_n^{{(r_n p_{n-1})}/{\alpha }}\big |^{\frac{\alpha }{r_n p_{n-1}}}+\cdots \nonumber \\&\quad +\big |x_2^{p_1}-e_2^{{(r_2 p_1)}/{\alpha }}\big |^{\frac{\alpha }{r_2 p_1}}+|x_1|^{\frac{\alpha }{r_1}})^\frac{r_{n+1}}{\alpha }\nonumber \\&\le c \left( \sum _{i=1}^n|x_i|^{\frac{r_{n+1}}{r_i}}+\sum _{i=2}^n|e_i|^{\frac{r_{n+1}}{\alpha }} \right) \end{aligned}$$
(A13)

From (10) and (33), one has

$$\begin{aligned} |u|&\le c\left( \sum _{i=1}^n|x_i|^{\frac{r_{n+1}}{r_i}}+\sum _{i=2}^n|e_i|^{\frac{r_{n+1}}{\alpha }}+L^{-1}\hbox {e}^{-a_0t}\right) \nonumber \\&\le c\left( \sum _{i=1}^n|\xi _i|^{\frac{r_{n+1}}{\alpha }}+\sum _{i=2}^n|e_i|^{\frac{r_{n+1}}{\alpha }}+L^{-1}\hbox {e}^{-a_0t}\right) . \end{aligned}$$
(A14)

From the definition of \(e_{n-1}\), one has

$$\begin{aligned} |x_{n-1}-{\hat{x}}_{n-1}|&=|(x_{n-1}^{p_{n-2}})^{\frac{1}{p_{n-2}}}-({\hat{x}}_{n-1}^{p_{n-2}})^{\frac{1}{p_{n-2}}}|\nonumber \\&\le 2^{1-\frac{1}{p_{n-2}}}|e_{n-1}|^{\frac{r_{n-1}}{\alpha }}. \end{aligned}$$
(A15)

If \(\tau \ge 0\), then \(\frac{r_{n-1}}{r_np_{n-1}}=\frac{r_{n-1}}{r_{n-1}+\tau }\le 1\). By Lemma 3, one has

$$\begin{aligned} |(x_n^{p_{n-1}})^{\frac{r_{n-1}}{r_np_{n-1}}}-({\hat{x}}_n^{p_{n-1}})^{\frac{r_{n-1}}{r_np_{n-1}}}|\le 2^{1-\frac{r_{n-1}}{r_n p_{n-1}}}|e_n|^{\frac{r_{n-1}}{\alpha }}. \end{aligned}$$
(A16)

If \(\tau < 0\), then \(\frac{r_{n-1}}{r_np_{n-1}}=\frac{r_{n-1}}{r_{n-1}+\tau }>1\). From (10) and Lemma 3, one has

$$\begin{aligned}&|(x_n^{p_{n-1}})^{\frac{r_{n-1}}{r_np_{n-1}}}-({\hat{x}}_n^{p_{n-1}})^{\frac{r_{n-1}}{r_n p_{n-1}}}|\nonumber \\ {}&\quad \le c(|e_n|^{\frac{r_{n-1}}{\alpha }}+|x_n|^{\frac{r_{n-1}}{r_n}})\nonumber \\&\quad \le c(|e_n|^{\frac{r_{n-1}}{\alpha }}+|\xi _n-\beta _{n-1}^\frac{\alpha }{r_n}\xi _{n-1}|^\frac{r_{n-1}}{\alpha })\nonumber \\&\quad \le c(|e_n|^{\frac{r_{n-1}}{\alpha }}+|\xi _n|^{\frac{r_{n-1}}{\alpha }}+|\xi _{n-1}|^{\frac{r_{n-1}}{\alpha }}). \end{aligned}$$
(A17)

Using Young’s inequality and the above inequalities, one has

$$\begin{aligned}&\rho _n x_n^{\rho _n-1}(x_n^{\frac{r_{n-1}}{r_n}}-\zeta _n)u\nonumber \\&\quad \le c|x_n|^{\rho _n-1}|(x_n^{p_{n-1}})^{\frac{r_{n-1}}{r_np_{n-1}}}-({\hat{x}}_n^{p_{n-1}})^{\frac{r_{n-1}}{r_np_{n-1}}}\nonumber \\&\qquad -l_{n-1}(x_{n-1}-{\hat{x}}_{n-1})| |u|\nonumber \\&\quad \le c(|\xi _n|^{\frac{(\rho _n-1)r_n}{\alpha }}+|\xi _{n-1}|^{\frac{(\rho _n-1)r_n}{\alpha }})\nonumber \\&\quad {\times }\big (|e_n|^{\frac{r_{n{-}1}}{\alpha }}{+}|\xi _n|^{\frac{r_{n-1}}{\alpha }}{+}|\xi _{n-1}|^{\frac{r_{n-1}}{\alpha }}{+}l_{n-1}|e_{n-1}|^{\frac{r_{n-1}}{\alpha }}\big )\nonumber \\&\qquad \times \left( \sum _{i=1}^n|\xi _i|^{\frac{r_{n+1}}{\alpha }}+\sum _{i=2}^n|e_i|^{\frac{r_{n+1}}{\alpha }}+L^{-1}\hbox {e}^{-a_0t}\right) \nonumber \\&\quad \le \frac{1}{8}\sum _{i=1}^{n}\xi _i^\frac{2\mu }{\alpha }+\bar{\alpha }\sum _{i=2}^n e_i^\frac{2\mu }{\alpha }+g_n(l_{n-1})e_{n-1}^\frac{2\mu }{\alpha }\nonumber \\&\qquad +c_1 L^{-\frac{2\mu }{r_{n+1}}}\hbox {e}^{-\frac{2\mu a_0}{r_{n+1}} t} \end{aligned}$$
(A18)

where \({\bar{\alpha }}, c_1\) are constants and \(g_n\) is a continuous function of \(l_{n-1}\).

Proof of Proposition 6:

From (33), one has

$$\begin{aligned}&\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }(u-x_{n+1}^{*})\nonumber \\&\quad =\frac{1+\delta _0 L^{-1}}{1+b_{1}(t)\delta _0 L^{-1}}\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }\big (u({\hat{x}})-x_{n+1}^{*}\big )\nonumber \\ {}&\quad +\frac{b_{2}(t)\delta _1 L^{-1} \hbox {e}^{-a_0t}}{1+b_{1}(t)\delta _0 L^{-1}}\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }\nonumber \\&\qquad +\left( \frac{1+\delta _0 L^{-1}}{1+b_1(t)\delta _0L^{-1}}-1\right) \xi _n^\frac{2\mu -\tau -r_{n}}{\alpha } x_{n+1}^{*}\nonumber \\&\quad \le \frac{1+\delta _0 L^{-1}}{1+b_{1}(t)\delta _0 L^{-1}}\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }\big (u({\hat{x}})-x_{n+1}^{*}\big )\nonumber \\&\qquad +\frac{b_{2}(t)\delta _1 L^{-1} \hbox {e}^{-a_0t}}{1+b_{1}(t)\delta _0 L^{-1}}\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha } \end{aligned}$$
(A19)

where the last relation is obtained by \(\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }x_{n+1}^{*}\le 0\) and \(\frac{1+\delta _0 L^{-1}}{1+b_1(t)\delta _0 L^{-1}}-1\ge 0\).

Now, we estimate the first term of (A19).

$$\begin{aligned}&\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }\big (u(\hat{x})-x_{n+1}^{*}\big )\nonumber \\&\le |\xi _n|^\frac{2\mu -\tau -r_{n}}{\alpha }\big |\beta _n \left( {\hat{x}}_n^{\frac{\alpha }{r_n}}+\sum _{i=1}^{n-1}(\prod _{j=i}^{n-1}\beta _j^{\frac{\alpha }{r_{j+1}}}){\hat{x}}_i^{\frac{\alpha }{r_i}}\right) ^\frac{r_{n+1}}{\alpha }\nonumber \\&\quad -\beta _n\left( x_n^{\frac{\alpha }{r_n}}+\sum _{i=1}^{n-1}\left( \prod _{j=i}^{n-1}\beta _j^{\frac{\alpha }{r_{j+1}}}\right) x_i^{\frac{\alpha }{r_i}}\right) ^\frac{r_{n+1}}{\alpha }\big |\nonumber \\&\le c|\xi _n|^\frac{2\mu -\tau -r_{n}}{\alpha }\left( \sum _{i=2}^{n} |\hat{x}_i^{\frac{\alpha }{r_i}}-x_i^{\frac{\alpha }{r_i}}|\right) ^\frac{r_{n+1}}{\alpha }. \end{aligned}$$
(A20)

From (10), one has \(|x_i^{{\alpha }/{r_i}}|\le c(|\xi _i|+|\xi _{i-1}|)\). By Lemma 3, we have

$$\begin{aligned} |\hat{x}_i^{{\alpha }/{r_i}}-x_i^{{\alpha }/{r_i}}|&=|(\hat{x}_i^{p_{i-1}})^{\frac{\alpha }{r_ip_{i-1}}}-(x_i^{p_{i-1}})^{\frac{\alpha }{r_ip_{i-1}}}|\nonumber \\&\le c(|e_i|+|x_i|^{{\alpha }/{r_i}})\nonumber \\&\le c(|e_i|+|\xi _i|+|\xi _{i-1}|). \end{aligned}$$
(A21)

Substituting (A21) into (A20) yields

$$\begin{aligned}&\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }\big (u(\hat{x})-x_{n+1}^{*}\big )\nonumber \\ {}&\quad \le c|\xi _n|^\frac{2\mu -\tau -r_{n}}{\alpha }\Big (\sum _{i=2}^n(|e_i|+|\xi _i|+|\xi _{i-1}|)\Big )^{\frac{r_{n+1}}{\alpha }}\nonumber \\&\quad \le c|\xi _n|^\frac{2\mu -\tau -r_{n}}{\alpha }\sum _{i=2}^n \big (|e_i|^\frac{r_{n+1}}{\alpha } +|\xi _i|^\frac{r_{n+1}}{\alpha }+|\xi _{i-1}|^\frac{r_{n+1}}{\alpha }\big )\nonumber \\&\quad \le \frac{1}{6}\sum _{i=1}^{n}\xi _i^\frac{2\mu }{\alpha }+{\tilde{\alpha }} \sum _{i=2}^n e_i^\frac{2\mu }{\alpha } \end{aligned}$$
(A22)

where \({\tilde{\alpha }}>0\) is a constant.

By using Young’s inequality, one has

$$\begin{aligned} \frac{b_{2}(t)\delta _1 L^{-1} \hbox {e}^{-a_0t}}{1+b_{1}(t)\delta _0L^{-1}}\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }&\le c|L^{-1}\hbox {e}^{-a_0 t}||\xi _n|^{\frac{2\mu -\tau -r_{n}}{\alpha }}\nonumber \\&\le \frac{1}{12}\xi _n^{\frac{2\mu }{\alpha }}+c_2 L^{-\frac{2\mu }{r_{n+1}}}\hbox {e}^{-\frac{2\mu a_0}{r_{n+1}}t} \end{aligned}$$
(A23)

where \(c_2>0\) is a constant.

Substituting (A22) and (A23) into (A19), one has

$$\begin{aligned}&\xi _n^\frac{2\mu -\tau -r_{n}}{\alpha }(u-x_{n+1}^{*})\nonumber \\ {}&\quad \le \frac{1}{4}\sum _{i=1}^{n}\xi _i^\frac{2\mu }{\alpha }+{\tilde{\alpha }} \sum _{i=2}^n e_i^\frac{2\mu }{\alpha }+c_2 L^{-\frac{2\mu }{r_{n+1}}}\hbox {e}^{-\frac{2\mu a_0}{r_{n+1}}t}. \end{aligned}$$
(A24)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J. Event-triggered control for p-normal uncertain nonlinear systems. Nonlinear Dyn 112, 3661–3677 (2024). https://doi.org/10.1007/s11071-023-09220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09220-0

Keywords

Navigation