Skip to main content
Log in

Dynamic modeling and closed-loop modulation for absence seizures caused by abnormal glutamate uptake from astrocytes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Absence seizures are not only associated with abnormal interactions in basal gangliacorticothalamic (BGCT) circuits, but are also influenced by glial functions. By introducing extracellular glutamate dynamics associated with neurons and astrocytes, we develop a BGCT model containing the astrocytic function module to simulate seizure phenomena resulting from insufficient glutamate uptake from astrocytes. Differential alterations in the occurrence threshold of spike wave discharges (SWDs) are found by comparing the astrocytic function parameter under different \(\textrm{GABA}_{\textrm{A}}\) or \(\textrm{GABA}_{\textrm{B}}\) inhibition degrees from the reticular nuclei (TRN). Specifically, with enhancement from \(\textrm{GABA}_{\textrm{A}}\) inhibition, thresholds undergo the non-monotonic change, whereas raising \(\textrm{GABA}_{\textrm{B}}\) inhibition will always increase thresholds. Afterwards, we reveal the effects of deep brain stimulation (DBS) frequency and timing on seizure waveform under different pathological degree. Most importantly, a closed-loop strategy based on extracellular glutamate concentration is proposed, which is more on-demand and current-saving than traditional open-loop stimulation. Our theoretical study may provide insights into understanding the astrocytic triggers of absence seizures and further designing regulatory strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Crunelli, V., Leresche, N.: Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3(5), 371–382 (2002)

    CAS  PubMed  Google Scholar 

  2. Panayiotopoulos, C.P.: Typical absence seizures and related epileptic syndromes: assessment of current state and directions for future research. Epilepsia 49(12), 2131–2139 (2008)

    PubMed  Google Scholar 

  3. Larsen H (1980) Chapter 3 ecology of hypersaline environments. In: Developments in Sedimentology, vol 28, pp 23–39. Elsevier

  4. Farizatto, K.L., Baldwin, K.T.: Astrocyte-synapse interactions during brain development. Curr. Opin. Neurobiol. 80, 102704 (2023)

    CAS  PubMed  Google Scholar 

  5. Vainchtein, I.D., Molofsky, A.V.: Astrocytes and microglia: in sickness and in health. Trends Neurosci. 43(3), 144–154 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Snead, O.C.: Basic mechanisms of generalized absence seizures. Ann. Neurol. 37(2), 146–157 (1995)

    PubMed  Google Scholar 

  7. Destexhe, A.: Spike-and-wave oscillations based on the properties of GABA \(_{\rm b }\) receptors. J. Neurosci. 18(21), 9099–9111 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Destexhe, A.: Cortico-thalamic feedback: a key to explain absence seizures. In: Soltesz, I., Staley, K. (eds.) Computational Neuroscience in Epilepsy, pp. 184–214. Elsevier, Amsterdam (2008)

    Google Scholar 

  9. Avoli, M.: A brief history on the oscillating roles of thalamus and cortex in absence seizures: thalamus and Cortex Roles in Absence Seizures. Epilepsia 53(5), 779–789 (2012)

    PubMed  PubMed Central  Google Scholar 

  10. Chen, M., Guo, D., Wang, T., Jing, W., Xia, Y., Xu, P., Luo, C., Valdes-Sosa, P.A., Yao, D.: Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput. Biol. 10(3), e1003495 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

  11. Arakaki, T., Mahon, S., Charpier, S., Leblois, A., Hansel, D.: The role of striatal feedforward inhibition in the maintenance of absence seizures. J. Neurosci. 36(37), 9618–9632 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paz, J.T., Chavez, M., Saillet, S., Deniau, J.M., Charpier, S.: Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J. Neurosci. 27(4), 929–941 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Seifert, G., Carmignoto, G.: Steinhäuser C: Astrocyte dysfunction in epilepsy. Brain Res. Rev. 63(1–2), 212–221 (2010)

    CAS  PubMed  Google Scholar 

  14. Dutuit, M., Touret, M., Szymocha, R., Nehlig, A., Belin, M.F., Didier-Bazes, M.: Decreased expression of glutamate transporters in genetic absence epilepsy rats before seizure occurrence. J. Neurochem. 80(6), 1029–1038 (2002)

    CAS  PubMed  Google Scholar 

  15. Touret, M., Parrot, S., Denoroy, L., Belin, M.F., Didier-Bazes, M.: Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci. 8(1), 69 (2007)

    PubMed  PubMed Central  Google Scholar 

  16. Gobbo, D., Scheller, A., Kirchhoff, F.: From physiology to pathology of cortico-thalamo-cortical oscillations: astroglia as a target for further research. Front. Neurol. 12, 661408 (2021)

    PubMed  PubMed Central  Google Scholar 

  17. Patel, D.C., Tewari, B.P., Chaunsali, L., Sontheimer, H.: Neuron-glia interactions in the pathophysiology of epilepsy. Nat. Rev. Neurosci. 20(5), 282–297 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suffczynski, P., Kalitzin, S., Lopes Da Silva, F.: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2), 467–484 (2004)

    CAS  PubMed  Google Scholar 

  19. Taylor, P.N., Baier, G., Cash, S.S., Dauwels, J., Slotine, J.J., Wang, Y.: A Model of Stimulus Induced Epileptic Spike-wave Discharges, pp. 53–59. IEEE, Singapore (2013)

    Google Scholar 

  20. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition: Epileptic activity explained by dendritic dis-inhibition. Eur. J. Neurosci. 15(9), 1499–1508 (2002)

    CAS  PubMed  Google Scholar 

  21. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C.: On the nature of seizure dynamics. Brain 137(8), 2210–2230 (2014)

    PubMed  PubMed Central  Google Scholar 

  22. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65(4), 041924 (2002)

    ADS  CAS  Google Scholar 

  23. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16(9), 1296–1313 (2006)

    CAS  PubMed  Google Scholar 

  24. Marten, F., Rodrigues, S., Benjamin, O., Richardson, M.P., Terry, J.R.: Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1891), 1145–1161 (2009)

    ADS  MathSciNet  Google Scholar 

  25. Chen, M., Guo, D., Li, M., Ma, T., Wu, S., Ma, J., Cui, Y., Xia, Y., Xu, P., Yao, D.: Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Comput. Biol. 11(10), e1004539 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  26. Chen, M., Guo, D., Xia, Y., Yao, D.: Control of absence seizures by the thalamic feed-forward inhibition. Front. Comput. Neurosci. 11, 31 (2017)

    PubMed  PubMed Central  Google Scholar 

  27. Tang, J., Liu, T.B., Ma, J., Luo, J.M., Yang, X.Q.: Effect of calcium channel noise in astrocytes on neuronal transmission. Commun. Nonlinear Sci. Numer. Simul. 32, 262–272 (2016)

    ADS  MathSciNet  Google Scholar 

  28. Reato, D., Cammarota, M., Parra, L.C., Carmignoto, G.: Computational model of neuron-astrocyte interactions during focal seizure generation. Front. Comput. Neurosci. 6, 81 (2012)

    PubMed  PubMed Central  Google Scholar 

  29. Wade, J.J., McDaid, L.J., Harkin, J., Crunelli, V., Kelso, J.A.S.: Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: A multiple modeling approach. PLoS ONE 6(12), e29445 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tewari, S., Majumdar, K.: A mathematical model of tripartite synapse: astrocyte induced synaptic plasticity. J. Biol. Phys. 38(3), 465–496 (2012)

    PubMed  PubMed Central  Google Scholar 

  31. Flanagan, B., McDaid, L., Wade, J., Wong-Lin, K., Harkin, J.: A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability. PLoS Comput. Biol. 14(4), e1006040 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  32. Ullah, G., Cressman, J.R., Jr., Barreto, E., Schiff, S.J.: The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. network and glial dynamics. J. Comput. Neurosci. 26(2), 171–183 (2009)

    MathSciNet  PubMed  Google Scholar 

  33. Li, J., Song, J., Tan, N., Cao, C., Du, M., Xu, S., Wu, Y.: Channel block of the astrocyte network connections accounting for the dynamical transition of epileptic seizures. Nonlinear Dyn. 105(4), 3571–3583 (2021)

    Google Scholar 

  34. Garnier, A., Vidal, A., Benali, H.: A theoretical study on the role of astrocytic activity in neuronal hyperexcitability by a novel neuron-glia mass model. J. Math. Neurosci. 6(1), 10 (2016)

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  35. Bui, A.D., Alexander, A., Soltesz, I.: Seizing control: from current treatments to optogenetic interventions in epilepsy. Neuroscientist 23(1), 68–81 (2017)

    PubMed  Google Scholar 

  36. Valentín, A., García Navarrete, E., Chelvarajah, R., Torres, C., Navas, M., Vico, L., Torres, N., Pastor, J., Selway, R., Sola, R.G., Alarcon, G.: Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 54(10), 1823–1833 (2013)

    PubMed  Google Scholar 

  37. Wang, Z., Wang, Q.: Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dyn. 96(2), 1649–1663 (2019)

    Google Scholar 

  38. Fan, D., Wang, Q.: Improved control effect of absence seizures by autaptic connections to the subthalamic nucleus. Phys. Rev. E 98(5), 052414 (2018)

    ADS  CAS  Google Scholar 

  39. Fan, D., Zheng, Y., Yang, Z., Wang, Q.: Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Appl. Math. Mech. 41(9), 1287–1302 (2020)

    MathSciNet  Google Scholar 

  40. Fan, D., Zhang, L., Wang, Q.: Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control. Nonlinear Dyn. 94(4), 2807–2825 (2018)

    Google Scholar 

  41. Fan, D., Wang, Q.: Closed-loop control of absence seizures inspired by feedback modulation of basal ganglia to the corticothalamic circuit. IEEE Trans. Neural Syst. Rehabil. Eng. 28(3), 581–590 (2020)

    PubMed  Google Scholar 

  42. Grant, Lowery: Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 584–594 (2013)

    PubMed  Google Scholar 

  43. Mirza, K.B., Golden, C.T., Nikolic, K., Toumazou, C.: Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front. Neurosci. 13, 808 (2019)

  44. Deransart, C., Vercueil, L., Marescaux, C., Depaulis, A.: The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res. 32(1–2), 213–223 (1998)

    CAS  PubMed  Google Scholar 

  45. Blanchard, S., Saillet, S., Ivanov, A., Benquet, P., Bénar, C.G., Pélégrini-Issac, M., Benali, H., Wendling, F.: A new computational model for neuro-glio-vascular coupling: Astrocyte activation can explain cerebral blood flow nonlinear response to interictal events. PLoS ONE 11(2), e0147292 (2016)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11932003, 12272092, 12202027, and 12332004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yu, Y., Han, F. et al. Dynamic modeling and closed-loop modulation for absence seizures caused by abnormal glutamate uptake from astrocytes. Nonlinear Dyn 112, 3903–3916 (2024). https://doi.org/10.1007/s11071-023-09218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09218-8

Keywords

Navigation