Skip to main content
Log in

Lyapunov functions and regions of attraction for spherically constrained relative orbital motion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the problem of a deputy spacecraft constrained to remain a fixed distance from another spacecraft. The relative dynamics of the deputy spacecraft are derived from a velocity-dependent potential function. A constant of motion is presented that aids in the development of multiple Lyapunov functions and stabilizing control laws. Through both numerical and analytical methods, estimates of the region of attraction are presented for each of the control laws. These regions of attraction serve as domains on which it is conclusively known that the equilibrium points are stabilizable. Lastly, a control law with a spatially maximal region of attraction is presented that can be used to track a time-varying trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data required to reproduce results of the manuscript are provided in the manuscript.

References

  1. Tatsch, A., Fitz-Coy, N., Gladun, S.: On-orbit servicing: a brief survey. In: Proceedings of the IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR’06), pp. 276–281 (2006)

  2. Stoll, E., Letschnik, J., Walter, U., Artigas, J., Kremer, P., Preusche, C., Hirzinger, G.: On-orbit servicing. IEEE Robot. Autom. Mag. 16, 29–33 (2009)

    Article  Google Scholar 

  3. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)

    Article  Google Scholar 

  4. Saleh, J.H., Lamassoure, E.S., Hastings, D.E., Newman, D.J.: Flexibility and the value of on-orbit servicing: new customer-centric perspective. J. Spacecr. Rocket. 40(2), 279–291 (2003)

    Article  ADS  Google Scholar 

  5. Coll, G.T., Webster, G., Pankiewicz, O., Schlee, K., Aranyos, T., Nufer, B., Fothergill, J., Tamasy, G., Kandula, M., Felt, A., et al.: Satellite servicing projects division restore—l propellant transfer subsystem progress 2020. In: AIAA Propulsion and Energy 2020 Forum, p. 3795 (2020)

  6. Akella, M.: Relative pose estimation using monocular vision for spacecraft proximity operations. In: 2023 American Control Conference, America Automatic Control Council (2023)

  7. Petersen, C., Caverly, R., Phillips, S., Avishai, W.: Safe and constrained rendezvous, proximity operations, and docking. In: 2023 American Control Conference, pp. 3645–3661. America Automatic Control Council (2023)

  8. Kessler, D.J., Johnson, N.L., Liou, J., Matney, M.: The Kessler syndrome: implications to future space operations. Adv. Astronaut. Sci. 137(8), 2010 (2010)

    Google Scholar 

  9. Board, D.M.I.: Overview of the DART mishap investigation results. Tech. Rep., NASA (2006)

  10. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley (2003)

  11. Shuster, S., Geller, D.K., Harris, M.W.: Analytic impulsive maneuver sequences for nominal safety ellipse reconfigurations. J. Guid. Control Dyn. 43(10), 1837–1853 (2020)

    Article  ADS  Google Scholar 

  12. Shuster, S., Geller, D.K., Harris, M.W.: An analytic maneuver sequence for safety ellipse reconfigurations based on relative orbital elements. J. Guid. Control Dyn. 44(9), 1593–1606 (2021)

  13. Woodford, N., Harris, M.W.: Geometric properties of time-optimal controls with state constraints using strong observability. IEEE Trans. Autom. Control 67(12), 6881–6887 (2021)

    Article  MathSciNet  Google Scholar 

  14. Woodford, N.T., Harris, M.W.: Spherically constrained relative motion trajectories in low earth orbit. J. Guid. Control Dyn. 46(4), 666–679 (2023)

  15. Harris, M.W., Woodford, N.T.: Equilibria, periodicity, and chaotic behavior in spherically constrained relative orbital motion. Nonlinear Dyn. 111(3), 2723–2739 (2023)

    Article  Google Scholar 

  16. Náprstek, J., Fischer, C.: Limit trajectories in a non-holonomic system of a ball moving inside a spherical cavity. J. Vib. Eng. Technol. 8(2), 269–284 (2020)

    Article  Google Scholar 

  17. Náprstek, J., Fischer, C.: Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system. Nonlinear Dyn. 99(1), 299–312 (2020)

    Article  Google Scholar 

  18. Desloge, E.: The Gibbs-Appell equations of motion. Am. J. Phys. 56(9), 841–846 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. Udwadia, F.E., Kalaba, R.E.: The explicit Gibbs–Appell equations and generalized inverse forms. Q. Appl. Math. LVI(2), 277–288 (1998)

  20. Náprstek, J., Fischer, C.: Appell–Gibbs approach in dynamics of non-holonomic systems. In: Reyhanoglu, M. (ed.) Nonlinear Systems, ch. 1. IntechOpen, Rijeka (2018)

  21. Náprstek, J., Fischer, C.: Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system. Nonlinear Dyn. 106, 1591–1625 (2021)

    Article  Google Scholar 

  22. Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    Article  Google Scholar 

  23. Khalil, H.: Nonlinear Systems. Prentice Hall (1996)

  24. Sinclair, A.J., Hurtado, J.E.: The motion constants of linear autonomous dynamical systems. Appl. Mech. Rev. 65(4), 040803 (2013)

    Article  Google Scholar 

  25. Rubens Goncalves Salsa, J., Kawano, D.T., Ma, F., Leitmann, G.: The inverse problem of linear Lagrangian dynamics. ASME J. Appl. Mech. 85(3), 031002 (2018)

  26. Greenwood, D.T.: Classical Dynamics. Courier Corporation (1997)

  27. Li, Y., Li, C., He, Z., Shen, Z.: Estimating and enlarging the region of attraction of multi-equilibrium points system by state-dependent edge impulses. Nonlinear Dyn. 103(3), 2421–2436 (2021)

    Article  Google Scholar 

  28. Armiyoon, A.R., Wu, C.Q.: A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques. Nonlinear Dyn. 79(1), 275–293 (2015)

    Article  MathSciNet  Google Scholar 

  29. Curtis, H.: Orbital Mechanics for Engineering Students. Butterworth-Heinemann (2013)

  30. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Pearson (2001)

  31. Lewis, F.L., Syrmos, V.L.: Optimal Control, pp. 423–446. John Wiley & Sons Hoboken, NJ, USA (1995)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the technical development of the work. Nathaniel T. Woodford wrote the manuscript and ran the computer simulations. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nathaniel T. Woodford.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

To develop a coordinate system where the singularities are moved to a different set of points, an alternate set of spherical coordinates is introduced. Again, we use the variables \(\rho \in {\mathbb {R}}\), \(\theta \in {\mathbb {R}}\), and \(\phi \in {\mathbb {R}}\) to define the transformation as

$$\begin{aligned} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \rho \begin{bmatrix} c_\phi s_\theta \\ s_\phi \\ c_\phi c_\theta \end{bmatrix} \end{aligned}$$
(112)

The singular points are again at \(\phi = \pm \pi /2\), but these now correspond to the points \((0,\pm R,0)\) in Cartesian coordinates. In accordance with the change of variables, the potential energy function U becomes

$$\begin{aligned} U = -2\rho ^2\omega ^2c_{\phi }^2\left( \frac{\dot{\phi }s_{\theta }}{\omega } - c_{\theta }^2 + \frac{3}{4}\right) -\rho \dot{\rho }\omega s_{2\phi } s_{\theta }\nonumber \\ \end{aligned}$$
(113)

The kinetic energy remains

$$\begin{aligned} T = \frac{1}{2}\left( \rho ^2 \left( \dot{\phi }^2 + \dot{\theta }^2c^2_{\phi }\right) + \dot{\rho }^2 \right) \end{aligned}$$
(114)

The transformation between control accelerations is given by the equation

$$\begin{aligned} \begin{bmatrix} u_\rho \\ u_\theta \\ u_\phi \end{bmatrix} = \begin{bmatrix} c_\theta &{} 0 &{} -s_\theta \\ -s_\theta s_\phi &{} c_\phi &{} -c_\theta s_\phi \\ s_\theta c_\phi &{} s_\phi &{} c_\theta c_\phi \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \end{aligned}$$
(115)

Following the procedure outlined in Sect. 3.2, the equations of motion become

$$\begin{aligned} \ddot{\theta }&= 2 \dot{\theta }\dot{\phi } \tau _\phi + 2 \omega ^2 s_{2\theta } + 2 \dot{\phi } \omega c_\theta + \frac{u_\theta }{R c_\phi } \end{aligned}$$
(116a)
$$\begin{aligned} \ddot{\phi }&= \frac{1}{2}(4 \omega ^2 c^2_\theta - \dot{\theta }^2 - 3 \omega ^2) s_{2\phi } - 2 \omega \dot{\theta } c^2_\phi c_\theta + \frac{u_\phi }{R} \end{aligned}$$
(116b)

We now analyze the equilibrium points \((0,0,\pm R)\) corresponding to \((\theta ,\phi ) = (0,0)\) and \((\pi ,0)\). For a generic equilibrium point \((\theta _e,\phi _e)\), translated spherical coordinates

$$\begin{aligned} \vartheta = \theta - \theta _e, \quad \varphi = \phi - \phi _e \end{aligned}$$
(117)

are introduced so that, in any case, the origin is the equilibrium point in \((\vartheta ,\varphi )\) coordinates. The nonlinear differential equations with zero input are then

$$\begin{aligned} \ddot{\vartheta } =&\ 2 \dot{\vartheta } \dot{\varphi } \tau _{(\varphi +\phi _e)} + 2 \omega ^2 s_{(2\vartheta +2\theta _e)} + 2 \dot{\varphi } \omega c_{(\vartheta +\theta _e)} \end{aligned}$$
(118a)
$$\begin{aligned} \ddot{\varphi } =&\ \frac{1}{2} \left( 4 \omega ^2 c^2_{(\vartheta +\theta _e)} - \dot{\vartheta }^2 - 3 \omega ^2 \right) s_{(2\varphi +2\phi _e)} \nonumber \\&\ -2 \omega \dot{\vartheta } c^2_{(\varphi +\phi _e)} c_{(\vartheta +\theta _e)} \end{aligned}$$
(118b)

1.1 Linear control and numerical RoA

Paper [15] suggests asymptotically stabilizing control law for the \((\theta ,\phi ) = (0,0)\) and \((\pi ,0)\) equilibrium points are

$$\begin{aligned} u_\theta&= -(4+k_p) R \omega ^2 \vartheta - 2 k_d R \omega \dot{\vartheta }, \quad k_p,k_d > 0 \end{aligned}$$
(119a)
$$\begin{aligned} u_\phi&= -(1+k_p) R \omega ^2 \varphi - 2 k_d R \omega \dot{\varphi }, \quad k_p,k_d > 0 \end{aligned}$$
(119b)

Following the procedure outlined in Sect. 4.2, the results of the numerical RoA estimation are outlined in Table 2.

Table 2 Numerical RoA parameters

The results outlined in Table 2 are for values of \(k_d = k_p = 1\). Varying the magnitudes of \(k_d\) and \(k_p\) will change the estimated RoA. The points (0, 0) and \((\pi ,0)\) have the same RoA. Figure 11 depicts the RoA on the zero velocity slice of the domain D, i.e., \(D|_{\dot{\vartheta } = \dot{\varphi } = 0}\).

1.2 Equilibrium points (0, 0) and \((\pi ,0)\)

When \(\theta _e \in \{0,\pi \}\) and \(\phi _e = 0\), the system dynamics are defined as

$$\begin{aligned} \ddot{\vartheta }&= 2 \dot{\vartheta } \dot{\varphi } \tau _{\varphi } + 2 \omega ^2 s_{2\vartheta } + 2 \dot{\varphi } \omega c_{(\vartheta +\theta _e)} + \frac{u_{\vartheta }}{R c_{\varphi }} \end{aligned}$$
(120a)
$$\begin{aligned} \ddot{\varphi }&= \frac{1}{2} \left( 4 \omega ^2 c^2_{\vartheta } - \dot{\vartheta }^2 - 3 \omega ^2 \right) s_{2\varphi } - 2 \omega \dot{\vartheta } c^2_{\varphi } c_{(\vartheta +\theta _e)} + \frac{u_{\varphi }}{R} \end{aligned}$$
(120b)

Given the nonlinear control laws

$$\begin{aligned} u_\vartheta&= -\left( 3\omega ^2s_{2\vartheta } + k_d\dot{\vartheta }\right) R c_{\varphi },\quad k_d > 0 \end{aligned}$$
(121a)
$$\begin{aligned} u_\varphi&= -\left( \omega ^2 s_{2\varphi }\left( 3 c_{\vartheta }^2 - \frac{3}{4}\right) + k_d \dot{\varphi }\right) R\quad k_d > 0 \end{aligned}$$
(121b)

the closed-loop system becomes

$$\begin{aligned} \ddot{\vartheta }&= 2\dot{\varphi }\dot{\vartheta } \tau _{\varphi } + 2\dot{\varphi }\omega c_{(\vartheta + \theta _e)} -\omega ^2 s_{2\vartheta } - k_d \dot{\vartheta } \end{aligned}$$
(122a)
$$\begin{aligned} \ddot{\varphi }&= -s_{2\varphi }\left( \frac{\dot{\vartheta }^2}{2} + \omega ^2\left( c_{\vartheta }^2 + \frac{3}{4}\right) \right) - 2\dot{\vartheta }\omega c_{\varphi }^2 c_{(\vartheta + \theta _e)} \nonumber \\&\quad \,- k_d \dot{\varphi } \end{aligned}$$
(122b)
Fig. 11
figure 11

The estimated RoA for the PD control law for the equilibrium points (0, 0) and \((\pi ,0)\)

where \(k_d > 0\). For this closed-loop system on the domain D, as defined in Sect. 5, we propose the Lyapunov candidate function

$$\begin{aligned} V = \dot{\varphi }^2 + (\dot{\vartheta }^2 - \frac{3}{2}\omega ^2 - 2\omega ^2 c^2_{\vartheta })c^2_{\varphi } + 3.5\omega ^2 \end{aligned}$$
(123)

Proposition 11

Given the dynamics described in Eqs. (122a)–(122b) on the domain D, the function V is a Lyapunov function.

Proof

The proof is similar to that of Proposition 5. \(\square \)

Note that V is also continuous on the domain \({\bar{D}}\). The domain \({\bar{D}}\) is defined in Sect. 5.

Proposition 12

On the domain \(\partial {\bar{D}} \subset {\mathbb {R}}^4\) where \(\alpha = \sqrt{3.5}\omega \), the function

$$\begin{aligned} V = \dot{\varphi }^2 + (\dot{\vartheta }^2 - \frac{3}{2}\omega ^2 - 2\omega ^2 c^2_{\vartheta })c^2_{\varphi } + 3.5\omega ^2 \end{aligned}$$

has a minimum value of \(\beta = 2\omega ^2\).

Proof

The proof is similar to that of Proposition 6. \(\square \)

Theorem 8

Given the closed loop system defined in (122a)–(122b), a RoA is the set

$$\begin{aligned} \varOmega = \left\{ (\vartheta ,\varphi ,\dot{\vartheta },\dot{\varphi }) \in D: V \le \gamma \right\} \end{aligned}$$
(124)

where \(\gamma \in (0,2\omega ^2)\).

Proof

The proof is similar to that of Theorem 4. As seen in Fig. 12, the ROA of the nonlinear control law encompasses the estimated ROA of the PD control law. \(\square \)

Fig. 12
figure 12

A RoA for the PD control law and nonlinear (NL) control law of the equilibrium points (0, 0) and \((\pi ,0)\)

1.3 Analytical RoA for equilibrium points (0, 0) and \((\pi ,0)\)

When \(\theta _e \in \{0,\pi \}\) and \(\phi _e = 0\), the system dynamics are defined as

$$\begin{aligned} \ddot{\vartheta }&= 2 \dot{\vartheta } \dot{\varphi } \tau _{\varphi } + 2 \omega ^2 s_{2\vartheta } + 2 \dot{\varphi } \omega c_{(\vartheta +\theta _e)} + \frac{u_{\vartheta }}{R c_{\varphi }} \end{aligned}$$
(125a)
$$\begin{aligned} \ddot{\varphi }&= \frac{1}{2} \left( 4 \omega ^2 c^2_{\vartheta } - \dot{\vartheta }^2 - 3 \omega ^2 \right) s_{2\varphi } - 2 \omega \dot{\vartheta } c^2_{\varphi } c_{(\vartheta +\theta _e)} \nonumber \\&\quad + \frac{u_{\varphi }}{R} \end{aligned}$$
(125b)

Given the nonlinear control laws

$$\begin{aligned} u_\vartheta&= -\frac{R}{4}\left( \omega ^2\left( 8 s_{2\vartheta } + s_{\vartheta }\right) + 2 k_d \dot{\vartheta }\right) c_{\varphi }, \quad k_d > 0 \end{aligned}$$
(126a)
$$\begin{aligned} u_\varphi&= -\frac{R}{4}\left( \omega ^2 \left( 8 c^2_{\vartheta } + c_{\vartheta } - 5 \right) s_{2\varphi } + 2 k_d \dot{\varphi }\right) ,\quad k_d > 0 \end{aligned}$$
(126b)

the closed-loop system becomes

$$\begin{aligned} \ddot{\vartheta }&= -\frac{\omega ^2}{4}s_{\vartheta } + 2 \omega \dot{\varphi }c_{(\vartheta + \theta _e)} + 2\dot{\varphi }\dot{\vartheta }\tau _{\varphi } - \frac{k_d}{2}\dot{\vartheta } \end{aligned}$$
(127a)
$$\begin{aligned} \ddot{\varphi }&= -\frac{1}{2}s_{2\varphi }\left( \dot{\vartheta }^2 + \frac{\omega ^2}{2}\left( c_{\vartheta } + 1\right) \right) - 2\omega \dot{\vartheta }c_{\varphi }^2c_{(\vartheta + \theta _e)}\nonumber \\&\quad - \frac{k_d}{2}\dot{\varphi } \end{aligned}$$
(127b)

For this closed-loop system on the domain \(D_\pi \), as defined in Sect. 6, we propose the Lyapunov candidate function

$$\begin{aligned} V = \dot{\varphi }^2 + (\dot{\vartheta }^2 - \omega ^2 c^2_{\vartheta /2}) c^2_{\varphi } + \omega ^2 \end{aligned}$$
(128)

Proposition 13

Given the dynamics described in Eqs. (127a)–(127b) on the domain \(D_{\pi }\), the function V is a Lyapunov function.

Proof

The proof is similar to that of Proposition 5. \(\square \)

Note that V is also continuous on the domain \({\bar{D}}_\pi \). The domain \({\bar{D}}_\pi \) is defined in Sect. 6.

Theorem 9

Given the closed loop system defined in (127a)–(127b), a RoA is the set

$$\begin{aligned} \varOmega = \left\{ (\vartheta ,\varphi ,\dot{\vartheta },\dot{\varphi }) \in D_\pi : V \le \gamma \right\} \end{aligned}$$
(129)

where \(\gamma \in (0,\omega ^2)\).

Proof

The proof is similar to that of Theorem 4. \(\square \)

Corollary 3

As \(\gamma \rightarrow \omega ^2\), \(\varOmega |_{\dot{\vartheta } = \dot{\varphi } = 0} \rightarrow D_{\pi }|_{\dot{\vartheta } = \dot{\varphi } = 0} \)

Proof

See Corollary 2. \(\square \)

Figure 13 compares the RoA of the three control laws investigated for the equilibrium points (0, 0) and \((\pi ,0)\). As seen in the figure, the RoA for the spatially maximal (SpatMax) control law’s RoA covers the entire sphere at zero velocity except for the equilibrium point \((0,\pi )\) and singular points \((0,\pm \frac{\pi }{2})\).

Fig. 13
figure 13

Comparison of control law’s RoAs for equilibrium points (0, 0) and \((\pi ,0)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodford, N.T., Harris, M.W. Lyapunov functions and regions of attraction for spherically constrained relative orbital motion. Nonlinear Dyn 112, 3357–3376 (2024). https://doi.org/10.1007/s11071-023-09197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09197-w

Keywords

Navigation