Skip to main content
Log in

Step-like initial value and Whitham modulation theory of the Fokas–Lenells equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The step-like initial value problem of the Fokas–Lenells equation is discussed based on Whitham modulation theory. Via the finite-gap integration method, the zero-phase, one-phase, N-phase solutions, and corresponding Whitham equation are obtained. Analytical and graphical methods are used to provide elementary wave structures of rarefaction waves and dispersive shock waves, which allows the classification of all wave structures that evolve from initial discontinuities. Finally, two typical Riemann problems are solved and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. EPL 96(2), 25002 (2011)

    Google Scholar 

  2. Chabchoub, A., Kibler, B., Finot, C., Millot, G., Onorato, M., Dudley, J.M., Babanin, A.V.: The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys. 361, 490–500 (2015)

    Google Scholar 

  3. Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes. Optik 167, 121–128 (2018)

    Google Scholar 

  4. Wang, X., Yang, B., Chen, Y., Yang, Y.: Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89(9), 095210 (2014)

    Google Scholar 

  5. Liu, M.Z., Cao, X.Q., Zhu, X.Q., Liu, B.N., Peng, K.C.: Variational principles and solitary wave solutions of generalized nonlinear Schrödinger equation in the ocean. J. Appl. Comput. Mech. 7(3), 1639–1648 (2021)

    Google Scholar 

  6. Marburger, J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Google Scholar 

  7. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27(3), 1393 (1983)

    Google Scholar 

  8. Wazwaz, A.M., Kaur, L.: Optical solitons for nonlinear Schrödinger (NLS) equation in normal dispersive regimes. Optik 184, 428–435 (2019)

    Google Scholar 

  9. Chávez-Cerda, S., Hickmann, J.M.: Diffraction induced high-order modes of the [2+1] nonparaxial nonlinear Schrodinger equation. IEEE J. Quantum Electron 1798–1800 (2005)

  10. Kuznetsov, A.G., Podivilov, E.V., Babin, S.A.: Spectral broadening of incoherent nanosecond pulses in a fiber amplifier. JOSA B 29(6), 1231–1236 (2012)

    Google Scholar 

  11. Mondal, P., Varshney, S.K.: Experimental observation of Kerr beam self-cleaning in graded-index multimode fiber from higher-order mode to fundamental mode. Opt. Fiber Technol. 65, 102587 (2021)

    Google Scholar 

  12. Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    MathSciNet  Google Scholar 

  13. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123(2), 215–232 (2009)

    MathSciNet  Google Scholar 

  14. Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas–Lenells equation. Waves Random Complex Media 27(4), 587–593 (2017)

    MathSciNet  Google Scholar 

  15. Lenells, J., Fokas, A.S.: An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons. Inverse Probl. 25, 115006 (2009)

    Google Scholar 

  16. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2008)

    Google Scholar 

  17. Shehata, M.S.M., Rezazadeh, H., Zahran, E.H.M., Tala-Tebue, E., Bekir, A.: New optical soliton solutions of the perturbed Fokas–Lenells equation. Commun. Theor. Phys. 71(11), 1275 (2019)

    MathSciNet  Google Scholar 

  18. Xu, S., He, J., Cheng, Y., Porseizan, K.: The n-order rogue waves of Fokas–Lenells equation. Math. Methods Appl. Sci. 38(6), 1106–1126 (2015)

    MathSciNet  Google Scholar 

  19. Hosseini, K., Mirzazadeh, M., Vahidi, J., Asghari, R.: Optical wave structures to the Fokas–Lenells equation. Optik 207, 164450 (2020)

    Google Scholar 

  20. Bansal, A., Kara, A.H., Biswas, A., Moshokoa, S.P., Belic, M.: Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas–Lenells equation. Chaos Solitons Fractals 114, 275–280 (2018)

    MathSciNet  Google Scholar 

  21. Ling, L.M., Feng, B.F., Zhu, Z.N.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)

    MathSciNet  Google Scholar 

  22. Cheng, Q.Y., Fan, E.G.: Long-time asymptotics for the focusing Fokas–Lenells equation in the solitonic region of space-time. J. Differ. Equ. 309, 883–948 (2022)

    MathSciNet  Google Scholar 

  23. He, J.S., Xu, S.W., Porsezian, K.: Rogue waves of the Fokas–Lenells equation. J. Phys. Soc. Jpn. 81, 124007 (2012)

    Google Scholar 

  24. Zhao, P., Fan, E., Hou, Y.: Algebro-geometric solutions and their reductions for the Fokas–Lenells hierarchy. J. Nonlinear Math. Phys. 20, 355–393 (2013)

    MathSciNet  Google Scholar 

  25. Whitham, G.B.: Nonlinear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965)

    Google Scholar 

  26. Whitham, G.B.: A general approach to linear and nonlinear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273–283 (1965)

    MathSciNet  Google Scholar 

  27. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collision less shock wave. Sov. Phys. JETP 38(2), 291–297 (1974)

    Google Scholar 

  28. Ablowitz, M.J., Benney, D.J.: The evolution of multiphase modes for non-linear dispersive waves. Stud. Appl. Math. 49, 225–238 (1970)

    Google Scholar 

  29. Grava, T.: Whitham modulation equations and application to small dispersion asymptotics and long time asymptotics of nonlinear dispersive equations. Rogue Shock Waves Nonlinear Dispersive Med. 309–335 (2016)

  30. Ablowitz, M.J., Cole, J.T., Rumanov, I.: Whitham equations and phase shifts for the Korteweg-de Vries equation. Proc. R. Soc. A. 476, 20200300 (2020)

    MathSciNet  Google Scholar 

  31. El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Phys. D 87, 186–192 (1995)

    MathSciNet  Google Scholar 

  32. Abeya, A., Biondini, G., Hoefer, M.A.: Whitham modulation theory for the defocusing nonlinear Schrödinger equation in two and three spatial dimensions. J. Phys. A Math. Theor. 56, 025701 (2023)

    Google Scholar 

  33. Ablowitz, M.J., Cole, J.T., Rumanov, I.: On the Whitham system for the (2+1)-dimensional nonlinear Schrödinger equation. Stud. Appl. Math. 150, 380–419 (2022)

    Google Scholar 

  34. Kamchatnov, A.M.: Evolution of initial discontinuities in the DNLS equation theory. J. Phys. Commun. 2, 025027 (2018)

    Google Scholar 

  35. Ivanov, S.K.: Riemann problem for the light pulses in optical fibers for the generalized Chen-Lee-Liu equation. Phys. Rev. A 101, 053827 (2020)

    MathSciNet  Google Scholar 

  36. Kodama, Y.J., Pierce, V.U., Tian, F.R.: On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 40, 1750–1782 (2008)

    MathSciNet  Google Scholar 

  37. Zeng, S.J., Liu, Y.Q.: The Whitham modulation solution of the complex modified KdV equation. Mathematics 11, 2810 (2023)

    Google Scholar 

  38. Congy, T., Ivanov, S.K., Kamchatnov, A.M., Pavloff, N.: Evolution of initial discontinuities in the Riemann problem for the Kaup–Boussinesq equation with positive dispersion. Chaos 27, 083107 (2017)

    MathSciNet  Google Scholar 

  39. Liu, Y.Q., Wang, D.S.: Exotic wave patterns in Riemann problem of the high-order Jaulent–Miodek equation. Whitham modulation theory. Stud. Appl. Math. 149, 588–630 (2022)

    MathSciNet  Google Scholar 

  40. Tomlinson, W.J., Stolen, R.H., Johnson, A.M.: Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10(9), 457–459 (1985)

    Google Scholar 

  41. Flaschka, H., Forest, M.G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Pure Appl. Math. 33, 739–784 (1980)

    MathSciNet  Google Scholar 

  42. Kamchatnov, A.M.: Nonlinear Periodic Waves and Their Modulations: An Introductory Course. World Scientific Publishing Company, Singapore (2000)

    Google Scholar 

  43. Kamchatnov, A.M.: New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability. Phys. Rep. 286, 199–270 (1997)

    MathSciNet  Google Scholar 

  44. Kamchatnov, A.M.: Whitham equations in the AKNS scheme. Phys. Lett. A 186, 387–390 (1994)

    MathSciNet  Google Scholar 

  45. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1965)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Natural Science Foundation (No. 1222005), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118).

Author information

Authors and Affiliations

Authors

Contributions

SZ: Writing-original daft, Software. YL: Supervision, Investigation.

Corresponding author

Correspondence to Yaqing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Liu, Y. Step-like initial value and Whitham modulation theory of the Fokas–Lenells equation. Nonlinear Dyn 112, 1365–1376 (2024). https://doi.org/10.1007/s11071-023-09156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09156-5

Keywords

Navigation