Skip to main content
Log in

Dynamic switching event-triggered fixed-time cooperative control for nonlinear multi-agent systems subject to non-affine faults

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, the cooperative control for nonlinear multi-agent systems (NMSs) subject to non-affine faults is investigated under directed graphs. A new distributed fixed-time event-triggered control protocol is proposed based on the leader–follower communication architecture, which saves network resources effectively and avoids Zeno behavior. A novel dynamic switching event-triggered mechanism (DSEM) is presented for each follower to ensure the smooth switching of two dynamic threshold strategies, and a dynamic internal trigger variable is designed based on the control input signals and errors, which can dynamically adjust the update frequency of the controller to reduce the number of system triggers. A new DSEM fixed-time distributed controller is designed based on local information to guarantee that all signals of the closed-loop system are fixed-time bounded. It is also proved that the consensus tracking errors of NMSs can converge to an explicitly given bound independent of the initial state in a fixed time. Finally, the validity of the presented control strategy is illustrated by two simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

MS:

Multi-agent system

NMS:

Nonlinear multi-agent system

ETTM:

Event-triggered mechanism

SPFTS:

Semi-global practical fixed-time stability

RBF:

Radial basis function

NN:

Neural network

FCF:

Fixed-time command filter

DSEM:

Dynamic switching ETTM

DITV:

Dynamic internal trigger variable

EI:

“Explosion of complexity” issue

TFES:

Traditional fixed-time ETTM control strategy

References

  1. Tian, B., Lu, H., Zuo, Z., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybern. 49(4), 1545–1550 (2019)

    Google Scholar 

  2. Liu, Y., Liu, J., He, Z., Li, Z., Zhang, Q., Ding, Z.: A survey of multi-agent systems on distributed formation control. Unmanned Syst. (2023). https://doi.org/10.1142/S2301385024500274

  3. Xue, K., Wu, T.: Distributed consensus of USVs under heterogeneous UAV-USV multi-agent systems cooperative control scheme. J. Mar. Sci. Eng. 9(11), 1314 (2021)

    Google Scholar 

  4. Zhang, C., Li, Y., Qi, G., Sheng, A.: Distributed finite-time control for coordinated circumnavigation with multiple non-holonomic robots. Nonlinear Dyn. 98, 573–588 (2019)

    Google Scholar 

  5. Restrepo, E., Loria, A., Sarras, I., Marzat, J.: Robust consensus of high-order systems under output constraints: application to rendezvous of underactuated UAVs. IEEE Trans. Autom. Control 68(1), 329–342 (2023)

    MathSciNet  Google Scholar 

  6. Yu, Z., Zhang, Y., Jiang, B., Su, C., Fu, J., Jin, Y., Chai, T.: Enhanced recurrent fuzzy neural fault-tolerant synchronization tracking control of multiple unmanned airships via fractional calculus and fixed-time prescribed performance function. IEEE Trans. Fuzzy Syst. 30(10), 4515–4529 (2022)

    Google Scholar 

  7. Li, K., Li, Y.: Adaptive NN optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems. IEEE Trans. Neural Netw. Learning Syst. 34(2), 947–957 (2023)

    MathSciNet  Google Scholar 

  8. Yao, D., Dou, C., Zhao, N., Zhang, T.: Practical fixed-time adaptive consensus control for a class of multi-agent systems with full state constraints and input delay. Neurocomputing 446, 156–164 (2021)

    Google Scholar 

  9. Yang, W., Cui, G., Ma, Q., Ma, J., Guo, S.: Finite-time adaptive optimal tracking control for a QUAV. Nonlinear Dyn. 111, 10063–10076 (2023)

    Google Scholar 

  10. Chen, C., Li, L., Peng, H., Yang, Y., Mi, L., Zhou, H.: A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks. Neural Netw. 123, 412–419 (2020)

    Google Scholar 

  11. Bai, W., Liu, P., Wang, H.: Neural-network-based adaptive fixed-time control for nonlinear multiagent non-affine systems. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3175929

    Article  Google Scholar 

  12. Wu, Y., Wang, Z.: Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults. IEEE Trans. Cybern. 51(3), 1150–1162 (2021)

    Google Scholar 

  13. Zhang, L., Liu, H., Tang, D., Hou, Y., Wang, Y.: Adaptive fixed-time fault-tolerant tracking control and its application for robot manipulators. IEEE Trans. Ind. Electron. 69(3), 2956–2966 (2022)

    Google Scholar 

  14. Li, H., Liu, C., Zhang, Y., Chen, Y.: Adaptive neural networks-based fixed-time fault-tolerant consensus tracking for uncertain multiple Euler–Lagrange systems. ISA Trans. 129, 102–113 (2022)

    Google Scholar 

  15. Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 29(4), 786–796 (2021)

    Google Scholar 

  16. Yu, X., Li, P., Zhang, Y.: Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles. IEEE Trans. Autom. Sci. Eng. 18(3), 1429–1440 (2021)

    Google Scholar 

  17. Lu, Y., Jia, Z., Liu, X., Lu, K.: Output feedback fault-tolerant control for hypersonic flight vehicles with non-affine actuator faults. Acta Astronaut. 193, 324–337 (2022)

    Google Scholar 

  18. Zheng, X., Li, X., Yao, D., Li, H., Lu, R.: Observer-based finite-time consensus control for multiagent systems with nonlinear faults. Inf. Sci. 621, 183–199 (2023)

    Google Scholar 

  19. Li, K., Li, Y.: Fuzzy adaptive optimal consensus fault-tolerant control for stochastic nonlinear multi-agent systems. IEEE Trans. Fuzzy Syst. 30(8), 2870–2885 (2022)

    Google Scholar 

  20. Liu, Y., Wang, Q., Hu, C., Dong, C.: ESO-based fault-tolerant anti-disturbance control for air-breathing hypersonic vehicles with variable geometry inlet. Nonlinear Dyn. 98, 2293–2308 (2019)

    Google Scholar 

  21. Huang, C., Liu, Z., Chen, C.P., Zhang, Y.: Adaptive fixed-time neural control for uncertain nonlinear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3165836

    Article  Google Scholar 

  22. Shao, X., Ye, D.: Event-based adaptive fuzzy fixed-time control for nonlinear interconnected systems with non-affine nonlinear faults. Fuzzy Sets Syst. 432, 1–27 (2022)

    MathSciNet  Google Scholar 

  23. Zheng, X., Li, H., Akn, C., Yao, D.: NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1738–1748 (2023)

    Google Scholar 

  24. Wang, J., Cui, Y.: Command filter-based adaptive fuzzy fixed-time tracking control for strict-feedback nonlinear systems with nonaffine nonlinear faults. Neural Comput. Appl. 35(17), 12875–12889 (2023)

    Google Scholar 

  25. Li, K., Li, Y., Zong, G.: Adaptive fuzzy fixed-time decentralized control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 29(11), 3428–3440 (2021)

    Google Scholar 

  26. Wang, Z., Sun, J.: Fixed-time consensus for uncertain multi-agent systems with actuator faults. J. Frankl. Inst. 357(2), 1199–1220 (2020)

    MathSciNet  Google Scholar 

  27. Du, Z., Liang, H., Xue, H.: Fixed-time adaptive anti-disturbance and fault-tolerant control for multi-agent systems. Int. J. Robust Nonlinear Control 32(12), 6684–6703 (2022)

    MathSciNet  Google Scholar 

  28. Yang, M., Wang, Z., Yu, D., Wang, Z., Liu, Y.: Extended state observer-based non-singular practical fixed-time adaptive consensus control of nonlinear multi-agent systems. Nonlinear Dyn. 111, 10097–10111 (2023)

    Google Scholar 

  29. Cui, G., Xu, H., Chen, X., Yu, J.: Fixed-time distributed adaptive formation control for multiple QUAVs with full-state constraints. IEEE Trans. Aerosp. Electron. Syst. 59(4), 4192–4206 (2023)

    Google Scholar 

  30. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    MathSciNet  Google Scholar 

  31. Zhang, P., Liu, T., Chen, J., Jiang, Z.: Recent developments in event-triggered control of nonlinear systems: an overview. Unmanned Syst. 11(1), 27–56 (2023)

    Google Scholar 

  32. Ni, J., Shi, P., Zhao, Y., Pan, Q., Wang, S.: Fixed-time event-triggered output consensus tracking of high-order multiagent systems under directed interaction graphs. IEEE Trans. Cybern. 52(7), 6391–6405 (2022)

    Google Scholar 

  33. Si, C., Wang, Q., Yu, J.: Event-triggered adaptive fuzzy neural network output feedback control for constrained stochastic nonlinear systems. IEEE Trans. Neural Netw. Learning Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3203419

    Article  Google Scholar 

  34. Wang, C., Wang, J., Zhang, C., Du, Y., Liu, Z., Chen, C.: Fixed-time event-triggered consensus tracking control for uncertain nonlinear multiagent systems with dead-zone constraint. Int. J. Robust Nonlinear Control 33(11), 6151–6170 (2023)

    MathSciNet  Google Scholar 

  35. Mei, Y., Li, F., Xia, R., Park, J., Shen, H.: Fixed-time adaptive neural tracking control for nonstrict-feedback nonlinear systems with mismatched disturbances using an event-triggered scheme. Nonlinear Dyn. 111(6), 5383–5400 (2023)

    Google Scholar 

  36. Li, Y., Li, Y., Tong, S.: Event-based finite-time control for nonlinear multi-agent systems with asymptotic tracking. IEEE Trans. Autom. Control 68(6), 3790–3797 (2023)

    Google Scholar 

  37. Wang, H., Xu, K., Qiu, J.: Event-triggered adaptive fuzzy fixed-time tracking control for a class of nonstrict-feedback nonlinear systems. IEEE Trans. Circuits Syst. I Reg. Papers 68(7), 3058–3068 (2021)

    Google Scholar 

  38. Lin, G., Li, H., Ahn, C., Yao, D.: Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Trans. Neural Netw. Learning Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3166531

    Article  Google Scholar 

  39. Ren, C., Fu, Q., Zhang, J., Zhao, J.: Adaptive event-triggered control for nonlinear multi-agent systems with unknown control directions and actuator failures. Nonlinear Dyn. 105, 1657–1672 (2021)

    Google Scholar 

  40. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Inc, Hoboken (2002)

    Google Scholar 

  41. Liu, Y., Chen, Y.: Dynamic memory event-triggered adaptive control for a class of strict-feedback nonlinear systems. IEEE Trans. Circuits Syst. II Exp. Briefs 69(8), 3470–3474 (2022)

    Google Scholar 

  42. Chen, B., Lin, C.: Finite-time stabilization-based adaptive fuzzy control design. IEEE Trans. Fuzzy Syst. 29(8), 2438–2443 (2021)

    Google Scholar 

  43. Zhang, H., Lewis, F., Qu, Z.: Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 59(7), 3026–3041 (2012)

    Google Scholar 

  44. Yao, D., Li, H., Lu, R., Shi, Y.: Event-based distributed sliding mode formation control of multi-agent systems and its applications to robot manipulators. Inf. Sci. 614, 87–103 (2022)

    Google Scholar 

  45. Lin, Y., Zhuang, G., Xia, J., Chen, G., Lu, J.: Sampled-data H\(\infty \) dynamic output feedback controller design for fuzzy markovian jump systems. J. Syst. Sci. Complex. 36(1), 239–256 (2023)

    MathSciNet  Google Scholar 

  46. Wang, C., Wen, C., Guo, L.: Adaptive consensus control for nonlinear multiagent systems with unknown control directions and time-varying actuator faults. IEEE Trans. Autom. Control 66(9), 4222–4229 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Outstanding Youth Talents Support Program 61822304, in part by the Basic Science Center Programs of NSFC under Grant 62088101, in part by the National Natural Science Fund of China under Grant 62003044, in part by Beijing Advanced Innovation Center for Intelligent Robots and Systems, in part by Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100) and in part by Shanghai Municipal Commission of Science and Technology Project (19511132101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

There exists a constant \(0<\aleph _a<1\) such that \({\dot{L}}(s)\le -k_aL(s)-k_bL^{\alpha }(s)-k_cL^{\beta }(s)+k_d\) can be rewritten by

$$\begin{aligned} {\dot{L}}(s)\le & {} -\aleph _ak_aL(s)-(1-\aleph _a)k_aL(s)-k_bL^{\alpha }(s)\nonumber \\{} & {} -k_cL^{\beta }(s)+k_d \end{aligned}$$
(39)
$$\begin{aligned} {\dot{L}}(s)\le & {} -k_aL(s)-\aleph _ak_bL^{\alpha }(s)-(1-\aleph _a)k_bL^{\alpha }(s)\nonumber \\{} & {} -k_cL^{\beta }(s)+k_d \end{aligned}$$
(40)

or

$$\begin{aligned} {\dot{L}}(s)\le & {} -k_aL(s)-k_bL^{\alpha }(s)-\aleph _ak_cL^{\beta }(s)\nonumber \\{} & {} -(1-\aleph _a)k_cL^{\beta }(s)+k_d. \end{aligned}$$
(41)

From (39), if \(L(s)>\frac{k_d}{(1-\aleph _a)k_a}\), \({\dot{L}}(s)\) satisfies \({\dot{L}}(s)\le -\aleph _ak_aL(s)-k_bL^{\alpha }(s)-k_cL^{\beta }(s)\). According to Lemma 1, s will be driven to the region

$$\begin{aligned} s\in \bigg \{s\Big |L(s)\le \frac{k_d}{(1-\aleph _a)k_a}\bigg \} \end{aligned}$$
(42)

in a fixed time \(T_a\le \frac{\ln (1+\frac{\aleph _ak_a}{k_b})}{\aleph _ak_a(1-\alpha )} +\frac{\ln (1+\frac{\aleph _ak_a}{k_c})}{\aleph _ak_a(\beta -1)}\).

From (40), if \(L^{\alpha }(s)>\frac{k_d}{(1-\aleph _a)k_b}\), \({\dot{L}}(s)\) satisfies \({\dot{L}}(s)\le -k_aL(s)-\aleph _ak_bL^{\alpha }(s)-k_cL^{\beta }(s)\). Similarly, s will be driven to the region

$$\begin{aligned} s\in \bigg \{s\Big |L^{\alpha }(s)\le \frac{k_d}{(1-\aleph _a)k_b}\bigg \} \end{aligned}$$
(43)

in a fixed time \(T_a\le \frac{\ln (1+\frac{k_a}{\aleph _ak_b})}{k_a(1-\alpha )} +\frac{\ln (1+\frac{k_a}{k_c})}{k_a(\beta -1)}\).

From (41), if \(L^{\beta }(s)>\frac{k_d}{(1-\aleph _a)k_c}\), \({\dot{L}}(s)\) satisfies \({\dot{L}}(s)\le -k_aL(s)-k_bL^{\alpha }(s)-\aleph _ak_cL^{\beta }(s)\). Similarly, s will be driven to the region

$$\begin{aligned} s\in \bigg \{s\Big |L^{\beta }(s)\le \frac{k_d}{(1-\aleph _a)k_c}\bigg \} \end{aligned}$$
(44)

in a fixed time \(T_a\le \frac{\ln (1+\frac{k_a}{k_b})}{k_a(1-\alpha )} +\frac{\ln (1+\frac{k_a}{\aleph _ak_c})}{k_a(\beta -1)}\). \(\ln (\cdot )\) satisfies \(\ln (1+\breve{\lambda })<\breve{\lambda }\) when \(\breve{\lambda }>0\). According to the property of \(\ln (\cdot )\), \(\frac{\ln (1+\frac{k_a}{\aleph _ak_b})}{k_a(1-\alpha )}>\frac{\ln (1+\frac{k_a}{k_b})}{k_a(1-\alpha )}\) and \(\frac{\ln (1+\frac{k_a}{\aleph _ak_c})}{k_a(\beta -1)}>\frac{\ln (1+\frac{k_a}{k_c})}{k_a(\beta -1)}\).

Define \(\daleth (\aleph _a)=\frac{\ln (1+\frac{\aleph _ak_a}{k_b})}{\aleph _ak_a(1-\alpha )}-\frac{\ln (1+\frac{k_a}{k_b})}{k_a(1-\alpha )} =\frac{\ln (1+\frac{\aleph _ak_a}{k_b})}{\aleph _ak_a(1-\alpha )}-\frac{\aleph _a\ln (1+\frac{k_a}{k_b})}{\aleph _ak_a(1-\alpha )}\) and \(\daleth _a(\aleph _a)=\ln (1+\frac{\aleph _ak_a}{k_b})-\aleph _a\ln (1+\frac{k_a}{k_b})\). \(\dot{\daleth }_a(\aleph _a)=\frac{k_a/k_b}{1+\aleph _ak_a/k_b}-\ln (1+k_a/k_b)\) and \(\ddot{\daleth }_a(\aleph _a)=-\frac{(k_a/k_b)^2}{(1+\aleph _ak_a/k_b)^2}<0\), where \(k_a/k_b>0\) and \(0<\aleph _a<1\). \({\lim _{\aleph _a \rightarrow 0^{+}}}\dot{\daleth }_a(\aleph _a)>0\) and \({\lim _{\aleph _a \rightarrow 1}}\dot{\daleth }_a(\aleph _a)<0\). When \(0<\aleph _a<1\), \(\daleth (\aleph _a)\) increases monotonically and then decreases monotonically. Since \(\daleth (0)=0\) and \(\daleth (1)=0\), \(\daleth (\aleph _a)>0\) for \(0<\aleph _a<1\). Therefore, \(\frac{\ln (1+\frac{\aleph _ak_a}{k_b})}{\aleph _ak_a(1-\alpha )} >\frac{\ln (1+\frac{k_a}{k_b})}{k_a(1-\alpha )}\). Similarly, \(\frac{\ln (1+\frac{\aleph _ak_a}{k_c})}{\aleph _ak_a(\beta -1)} >\frac{\ln (1+\frac{k_a}{k_c})}{k_a(\beta -1)}\).

When \(0<\aleph _a<1\), the relationship between \(\frac{\ln (1+\frac{\aleph _ak_a}{k_b})}{\aleph _ak_a(1-\alpha )}\) and \(\frac{\ln (1+\frac{k_a}{\aleph _ak_b})}{k_a(1-\alpha )}\) is impossible to judge. Similarly, \(\frac{\ln (1+\frac{\aleph _ak_a}{k_c})}{\aleph _ak_a(\beta -1)}\) and \(\frac{\ln (1+\frac{k_a}{\aleph _ak_c})}{k_a(\beta -1)}\) cannot be determined. Corollary 1 can be confirmed. \(\blacksquare \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Xin, B., Wang, Q. et al. Dynamic switching event-triggered fixed-time cooperative control for nonlinear multi-agent systems subject to non-affine faults. Nonlinear Dyn 112, 1087–1103 (2024). https://doi.org/10.1007/s11071-023-09132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09132-z

Keywords

Navigation