Skip to main content
Log in

Bright and kink solitons of time-modulated cubic–quintic–septic–nonic nonlinear Schrödinger equation under space-time rotated \(\mathcal{P}\mathcal{T}\)-symmetric potentials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work focuses on the propagation behaviors and stabilities of solitons of a nonlinear Schrödinger equation with temporally inhomogeneous dispersion, cubic–quintic–septic–nonic nonlinearity, and group delay under Scarff II, Rosen–Morse, Harmonic, and periodic (xt) plane rotated parity-time (\( \mathcal{P}\mathcal{T}\))-symmetric potentials, which governs the soliton wave transmission in a temporally inhomogeneous quasi-1D Bose-Einstein condensate system with the above effects. The novel analytical solutions of the bright solitons on zero or cw backgrounds and kink solitons under rotated \(\mathcal{P}\mathcal{T}\)-symmetric potentials in this system are presented for the first time. The simulation results of these three kinds of solitons show perfect consistency with the analytical ones. The bright solitons on zero or continuous-wave backgrounds show high noise immunity. While the anti-interference capability of kink soliton is connected with the form of the dispersion. These results would be advantageous for experimentally realizing stable propagation of localized nonlinear waves in highly nonlinear mediums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Chen, S., Shi, D., Yi, L.: Timing jitter of femtosecond solitons in single-mode optical fibers: a perturbation model. Phys. Rev. E 69, 046602 (2004)

    Google Scholar 

  2. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Google Scholar 

  3. Aitchison, J.S., Weiner, A.M., Silberberg, Y., Oliver, M.K., Jackel, J.L., Leaird, D.E., Vogel, E.M., Smith, P.W.E.: Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett. 15, 471–473 (1990)

    Google Scholar 

  4. Salin, F., Grangier, P., Roger, G., Brun, A.: Observation of high-order solitons directly produced by a femtosecond ring laser. Phys. Rev. Lett. 56, 1132 (1986)

    Google Scholar 

  5. Stegeman, G.I., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)

    Google Scholar 

  6. Geng, K.-L., Zhu, B.-W., Cao, Q.-H., Dai, C.-Q., Wang, Y.-Y.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111, 16483–16496 (2023)

    Google Scholar 

  7. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, London (2003)

    Google Scholar 

  8. Akhmediev, N.N., Ankiewicz, A., eds.: Dissipative Solitons: From Optics to Biology and Medicine. Vol. 751 of Lecture Notes in Physics, Springer (2008)

  9. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999)

    Google Scholar 

  10. Denschlag, J., Simsarian, J.E., Feder, D.L., Clark, C.W., Collins, L.A., Cubizolles, J., Deng, L., Hagley, E.W., Helmerson, K., Reinhardt, W.P., Rolston, S.L., Schneider, B.I., Phillips, W.D.: Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–100 (2000)

    Google Scholar 

  11. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    Google Scholar 

  12. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Surface gap solitons. Phys. Rev. Lett. 96, 073901 (2006)

    Google Scholar 

  13. Wang, D.S., Song, S.W., Xiong, B., Liu, W.M.: Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction. Phys. Rev. A 84, 053607 (2011)

    Google Scholar 

  14. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford, England (2003)

    Google Scholar 

  15. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Google Scholar 

  16. Ruprecht, P.A., Holland, M.J., Burnett, K., Edwards, M.: Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704 (1995)

    Google Scholar 

  17. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Google Scholar 

  18. Inouye, S., Andrews, M.R., Stenger, J., Miesner, H.J., Stamper-Kurn, D.M., Ketterle, W.: Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 392, 151–154 (1998)

    Google Scholar 

  19. Theis, M., Thalhammer, G., Winkler, K., Hellwig, M., Ruff, G., Grimm, R., Denschlag, J.H.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)

    Google Scholar 

  20. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    Google Scholar 

  21. Abdullaev, F.K., Kamchatnov, A.M., Konotop, V.V., Brazhnyi, V.A.: Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length. Phys. Rev. Lett. 90, 230402 (2003)

    Google Scholar 

  22. Rodas-Verde, M.I., Michinel, H., Pérez-García, V.M.: Controllable soliton emission from a Bose-Einstein condensate. Phys. Rev Lett. 95, 153903 (2005)

    Google Scholar 

  23. Rajendran, S., Muruganandam, P., Lakshmanan, M.: Bright and dark solitons in a quasi-1D Bose-Einstein condensates modelled by 1D GRoss-Pitaevskii equation with time-dependent parameters. Phys. D 239, 366–386 (2010)

    MathSciNet  Google Scholar 

  24. Wang, D.S., Hu, X.H., Hu, J., Liu, W.M.: Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A 81, 025604 (2010)

    Google Scholar 

  25. Zheng, Y., Meng, Y.J., Liu, Y.W.: Solitons in Gaussian potential with spatially modulated nonlinearity. Opt. Commun. 315, 63–68 (2014)

    Google Scholar 

  26. Loomba, S., Pal, R., Kumar, C.N.: Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity. Phys. Rev. A 92, 033811 (2015)

    Google Scholar 

  27. Triki, H., Choudhuri, A., Zhou, Q., Biswas, A., Alshomrani, S.A.: Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction. Appl. Math. Comput. 371, 124951 (2020)

    MathSciNet  Google Scholar 

  28. Liu, X., Zeng, J.: One-dimensional purely Lee-Huang-Yang fluids dominated by quantum fluctuations in two-component Bose-Einstein condensates. Chaos Solitons Fractals 160, 112240 (2022)

    MathSciNet  Google Scholar 

  29. Zhou, Z., Shi, Y., Ye, F., Chen, H., Tang, S., Deng, H., Zhong, H.: Self-bound states induced by the Lee-Huang-Yang effect in non-\( \cal{PT} \)-symmetric complex potentials. Nonlinear Dyn. 110, 3769–3778 (2022)

    Google Scholar 

  30. Ding, C.-C., Zhou, Q., Xu, S.-L., Sun, Y.Z., Liu, W.-J., Mihalache, D., Malomed, B.A.: Controlled nonautonomous matter-wave solitons in spinor Bose-Einstein condensates with spatiotemporal modulation. Chaos Solitons Fractals 169, 113247 (2023)

    MathSciNet  Google Scholar 

  31. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Google Scholar 

  32. Pal, R., Loomba, S., Kumar, C.N., Milovic, D., Maluckov, A.: Matter wave soliton solutions for driven Gross-Pitaevskii equation with distributed coefficients. Ann. Phys. 401, 116–129 (2019)

    MathSciNet  Google Scholar 

  33. Chen, Y.X., Xiao, X.: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109, 2003–2012 (2022)

    Google Scholar 

  34. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by \(\cal{PT} \) -symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Google Scholar 

  35. Wu, M., Liu, F., Zhao, D., Wang, Y.: Unidirectional invisibility in PT-symmetric cantor photonic crystals. Crystals 12, 199 (2022)

    Google Scholar 

  36. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam Dynamics in \(\cal{PT} \) Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Google Scholar 

  37. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Google Scholar 

  38. Zheng, M.C., Christodoulides, D.N., Fleischmann, R., Kottos, T.: \(\cal{PT} \) optical lattices and universality in beam dynamics. Phys. Rev. A 82, 010103(R) (2010)

    Google Scholar 

  39. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \(\cal{PT} \)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Google Scholar 

  40. Sheng, J., Miri, M.A., Christodoulides, D.N., Xiao, M.: \( \cal{PT} \)-symmetric optical potentials in a coherent atomic medium. Phys. Rev. A 88, 041803(R) (2013)

    Google Scholar 

  41. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Google Scholar 

  42. Regensburger, A., Miri, M.A., Bersch, C., Näger, G., Onishchukov, J., Christodoulides, D.N., Peschel, U.: Observation of defect states in \(\cal{PT} \)-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013)

    Google Scholar 

  43. Benisty, H., Degiron, A., Lupu, A., de Lustrac, A., Ché nais, S., Forget, S., Besbes, M., Barbillon, G., Bruyant, A., Blaize, S., L érondel, G.: Implementation of \(mathcal PT \) symmetric devices using plasmonics: principle and applications. Opt. Express. 19, 18004–18019 (2011)

  44. Bittner, S., Dietz, B., Günther, U., Harney, H.L., Miski-Oglu, M., Richter, A., Schäfer, F.: \(\cal{PT} \) symmetry and spontaneous symmetry breaking in a Microwave Billiard. Phys. Rev. Lett. 108, 024101 (2012)

    Google Scholar 

  45. Bender, C.M., Berntson, B.K., Parker, D., Samuel, E.: Observation of \(\cal{PT} \) phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013)

    Google Scholar 

  46. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Google Scholar 

  47. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulide, D.N.: Optical Solitons in \(\cal{PT} \) Periodic Potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Google Scholar 

  48. Zhou, Q., Triki, H., Xu, J., Zeng, Z., Liu, W., Biswas, A.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2022)

    MathSciNet  Google Scholar 

  49. Chen, Y.X., Xu, F.Q.: Higher dimensional Gaussian-type solitons of nonlinear Schrödinger equation with cubic and power-law nonlinearities in \(\cal{PT} \)-symmetric potentials. Plos One 9, e115935 (2014)

    Google Scholar 

  50. Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in \(\cal{PT} \)-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)

    Google Scholar 

  51. Chen, Y.X.: One-dimensional optical solitons in cubic-quintic-septimal media with \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 87, 1629–1635 (2017)

    Google Scholar 

  52. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Bright spatial solitons in quintic-septimal nonlinear media with two families of \(\cal{PT} \) -symmetric potentials. Eur. Phys. J. Plus 132, 533 (2017)

    Google Scholar 

  53. Chow, K.W., Rogers, C.: Localized and periodic wave patterns for a nonic nonlinear Schrödinger equation. Phys. Lett. A 377, 2546 (2013)

    MathSciNet  Google Scholar 

  54. Triki, H., Porsezian, K., Choudhuri, A., Dinda, P.T.: Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background. Phys. Rev. A 93, 063810 (2016)

    Google Scholar 

  55. Loriot, V., Hertz, E., Faucher, O., Lavorel, B.: Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429–13434 (2009)

    Google Scholar 

  56. Novoa, D., Michinel, H., Tommasini, D.: Fermionic light in common optical media. Phys. Rev. Lett. 105, 203904 (2010)

    Google Scholar 

  57. Manikandan, K., Aravinthan, D., Sudharsan, J.B., Reddy, S.R.R.: Soliton and rogue wave solutions of the space-time fractional nonlinear Schrödinger equation with \(\cal{PT} \)-symmetric and time-dependent potentials. Optik 266, 169594 (2022)

    Google Scholar 

  58. Midya, B., Roychoudhury, R.: Nonlinear localized modes in \(\cal{PT} \)-symmetric Rosen-Morse potential wells. Phys. Rev. A 87, 045803 (2013)

    Google Scholar 

  59. Jisha, C.P., Devassy, L., Alberucci, A., Kuriakose, V.C.: Influence of the imaginary component of the photonic potential on the properties of solitons in \(\cal{PT} \)-symmetric systems. Phy. Rev. A 90, 043855 (2014)

    Google Scholar 

  60. Zezyulin, D.A., Konotop, V.V.: Nonlinear modes in the harmonic \(\cal{PT} \)-symmetric potential. Phys. Rev. A 85, 043840 (2012)

    Google Scholar 

  61. Suneera, T.P., Subha, P.A.: Single-hump and double-hump solitons in a symmetric complex potential. Waves Random Complex Media 20, 241–254 (2016)

    MathSciNet  Google Scholar 

  62. Triki, H., Biswas, A., Milović, D., Belić, M.: Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. Opt. Commun. 366, 362–369 (2016)

    Google Scholar 

  63. Mansouri, F., Aouadi, S., Triki, H., Sun, Y., Yıldırım, Y., Biswas, A., Alshehri, H.M., Zhou, Q.: Chirped localized pulses in a highly nonlinear optical fiber with quintic non-Kerr nonlinearities. Results Phys. 43, 106040 (2022)

    Google Scholar 

  64. Wang, R.-R., Wang, Y.-Y., Dai, C.-Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11975172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Triki, H. & Zhou, Q. Bright and kink solitons of time-modulated cubic–quintic–septic–nonic nonlinear Schrödinger equation under space-time rotated \(\mathcal{P}\mathcal{T}\)-symmetric potentials. Nonlinear Dyn 112, 1349–1364 (2024). https://doi.org/10.1007/s11071-023-09116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09116-z

Keywords

Navigation