Skip to main content
Log in

Study on propagation properties of fractional soliton in the inhomogeneous fiber with higher-order effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a coupled higher-order variable-coefficient nonlinear Schrödinger equation, which may have some prospective applications in optical fiber communications. We present a modified Kudryashov method, which can be successfully applied to the fractional variable-coefficient equations with the modified Riemann–Liouville fractional derivative and obtain the soliton solution. The double-hump solitons and multi-soliton solutions are given via the Hirota bilinear method. Furthermore, we study the interaction of solitons by dynamical analysis and consider some important physical quantities. The relationship between the dynamical structure of the solitons and the certain parameters in the fractional nonlinear optical system is given by analyzing the analytical expressions and the dynamical images of the exact solutions. The results of this paper are helpful in promoting the study of fractional nonlinear optical systems and have theoretical guidance for optical communication in inhomogeneous optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated during the current study.

References

  1. Zabusky, N.J., Porter, M.A.: Soliton. Scholarpedia 5(8), 2068 (2010)

    Google Scholar 

  2. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2013)

    Google Scholar 

  3. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Google Scholar 

  4. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296(5571), 1290–1293 (2002)

    Google Scholar 

  5. Denschlag, J., Simsarian, J.E., Feder, D.L., Clark, C.W., Collins, L.A., Cubizolles, J., Deng, L., Hagley, E.W., Helmerson, K., Reinhardt, W.P.: Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287(5450), 97–101 (2000)

    Google Scholar 

  6. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83(25), 5198–5201 (1999)

    Google Scholar 

  7. Heidemann, R., Zhdanov, S., Sutterlin, R., Thomas, H.M., Morfill, G.E.: Dissipative dark soliton in a complex plasma. Phys. Rev. Lett. 102(13), 135002 (2009)

    Google Scholar 

  8. Qi, J.W., Li, Z.D., Yang, Z.Y., Yang, W.L.: Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet. Phys. Lett. A 381(22), 1874–1878 (2017)

    MathSciNet  Google Scholar 

  9. Morais, D., Lyra, M.L., de Moura, F.A.B.F., Dias, W.S.: The self-trapping transition of one-magnon excitations coupled to acoustic phonons. J. Magn. Magn. Mater. 506, 166798 (2020)

    Google Scholar 

  10. Huang, G.X., Shi, Z.P., Dai, X.X.: Soliton excitations in the alternating ferromagnetic Heisenberg chain. Phys. Rev. B 43(13), 11197–11206 (1991)

    Google Scholar 

  11. Costa, A., Osborne, A.R., Resio, D.T., Alessio, S., Chrivi, E., Saggese, E., Bellomo, K., Long, C.E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113(10), 108501 (2014)

    Google Scholar 

  12. Ostrovsky, L.A., Stepanyants, Y.A.: Do internal solitions exist in the ocean? Rev. Geophys. 27, 293–430 (1989)

    Google Scholar 

  13. Stalin, S., Ramakrishnan, R., Senthilvelan, M., Lakshmanan, M.: Nondegenerate solitons in Manakov system. Phys. Rev. Lett. 122(4), 043901 (2019)

    Google Scholar 

  14. Yan, Y.Y., Liu, W.J.: Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects. Appl. Math. Lett. 98, 171–176 (2019)

    MathSciNet  Google Scholar 

  15. Wang, T.Y., Zhou, Q., Liu, W.J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 31(2), 020501 (2022)

    Google Scholar 

  16. Yu, W.T., Zhou, Q., Mirzazadeh, M., Liu, W.J., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)

    Google Scholar 

  17. Xu, T., Lan, S., Li, M., Li, L.L., Zhang, G.W.: Mixed soliton solutions of the defocusing nonlocal nonlinear Schrödinger equation. Physica D 390, 47–61 (2019)

    MathSciNet  Google Scholar 

  18. Ling, L.M., Feng, B.F., Zhu, Z.N.: General soliton solutions to a coupled Fokas-Lenells equation. Nonlinear Anal. Real 40, 185–214 (2018)

    MathSciNet  Google Scholar 

  19. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Springer-Verlag, Berlin (1993)

    Google Scholar 

  20. Yang, J.: Nonlinear waves in integrable and nonintegrable systems. SIAM, Philadelphia (2010)

    Google Scholar 

  21. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segui, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  Google Scholar 

  22. Zhang, G.Q., Chen, S.Y., Yan, Z.Y.: Focusing and defocusing Hirota equations with non-zero boundary conditions: Inverse scattering transforms and soliton solutions. Commun. Nonlinear Sci. Numer. Simulat. 80, 104927 (2020)

    MathSciNet  Google Scholar 

  23. Ali, M.R., Khattab, M.A., Mabrouk, S.M.: Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method. Nonlinear Dyn. 111(8), 7687–7697 (2023)

    Google Scholar 

  24. Zhang, Z., Yang, X.Y., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020)

    MathSciNet  Google Scholar 

  25. Wang, H.T., Zhou, Q., Liu, W.J.: Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation. J. Adv. Res. 38, 179–180 (2022)

    Google Scholar 

  26. Liu, X.Y., Zhang, H.X., Liu, W.J.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)

    MathSciNet  Google Scholar 

  27. Liu, X.Y., Zhang, H.X., Yan, Y.Y., Liu, W.J.: Mode conversions and molecular forms of breathers under parameter control. Phys. Lett. A 457, 128568 (2023)

    MathSciNet  Google Scholar 

  28. Dodd, R.K., Bullough, R.K.: Bäcklund transformations for the sine-Gordon equations. Proc. R. Soc. Lond. A 351, 499–523 (1976)

    Google Scholar 

  29. Liu, Y.P., Gao, Y.T., Wei, G.M.: An improved \(\Gamma \)-Riccati Bäcklund transformation and its applications for the inhomogeneous nonlinear Schrödinger model from plasma physics and nonlinear optics. Physica A 391(3), 535–543 (2012)

    Google Scholar 

  30. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Bäcklund transformation and lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Waves Random. Complex. 28(2), 356–366 (2018)

    MathSciNet  Google Scholar 

  31. Kumar, S., Ma, W.X., Kumar, A.: Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation. Chin. J. Phys. 69, 1–23 (2021)

    MathSciNet  Google Scholar 

  32. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 17(6), 2248–2253 (2012)

    MathSciNet  Google Scholar 

  33. Onder, I., Secer, A., Bayram, M.: Optical soliton solutions of time-fractional coupled nonlinear Schrödinger system via Kudryashov-based methods. Optik 272, 170362 (2023)

    Google Scholar 

  34. Cheemaa, N., Seadawy, A.R., Chen, S.: More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics. Eur. Phys. J. Plus 133(12), 1–9 (2018)

    Google Scholar 

  35. Elhadj, K.M., Al Sakkaf, L., Al Khawaja, U., Boudjemaa, A.: Singular soliton molecules of the nonlinear Schrödinger equation. Phys. Rev. E 101(4), 042221 (2020)

    MathSciNet  Google Scholar 

  36. Goswami, J., Sarkar, J.: KBM approach to electron acoustic envelope soliton in viscous astrophysical plasma. Phys. Scr. 96(8), 085601 (2021)

    Google Scholar 

  37. Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Novel soliton wave solutions of a special model of the nonlinear Schrödinger equations with mixed derivatives. Results Phys. 47, 106367 (2023)

    Google Scholar 

  38. Bezerra, L.J.R., Morais, D., Buarque, A.R.C., Passos, F.S., Dias, W.S.: Thresholds between modulational stability, rogue waves and soliton regimes in saturable nonlinear media. Nonlinear Dyn. 111(7), 6629–6638 (2023)

    Google Scholar 

  39. Yang, B., Zhang, W.G., Zhang, H.Q., Pei, S.B.: Generalized Darboux transformation and rational soliton solutions for Chen-Lee-Liu equation. Appl. Math. Comput. 242, 863–876 (2014)

    MathSciNet  Google Scholar 

  40. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130(4), 317–344 (2013)

    MathSciNet  Google Scholar 

  41. Jenkins, R., Liu, J.Q., Perry, P., Sulem, C.: Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys. 363(3), 1003–1049 (2018)

    Google Scholar 

  42. Liu, C., Wu, Y.H., Chen, S.C., Yao, X.K., Akhmediev, N.: Exact analytic spectra of asymmetric modulation instability in systems with self-steepening effect. Phys. Rev. Lett. 127(9), 094102 (2021)

    MathSciNet  Google Scholar 

  43. Wang, H.T., Wen, X.Y., Wang, D.S.: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation. Wave Motion 91, 102396 (2019)

    MathSciNet  Google Scholar 

  44. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice. Appl. Math. Lett. 137, 108476 (2023)

    MathSciNet  Google Scholar 

  45. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, N-fold Darboux transformation and explicit exact solutions. Chaos Soliton. Fract. 164, 112460 (2022)

    MathSciNet  Google Scholar 

  46. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz 65, 505–516 (1973)

    Google Scholar 

  47. Wright, O.C.: The Darboux transformation of some Manakov systems. Appl. Math. Lett. 16, 647–652 (2003)

    MathSciNet  Google Scholar 

  48. Wang, H.T., Li, X., Zhou, Q., Liu, W.J.: Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos Soliton. Fract. 166, 112924 (2023)

    Google Scholar 

  49. Chen, S.S., Tian, B., Qu, Q.X., Li, H., Sun, Y., Du, X.X.: Alfven solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. Chaos Soliton. Fract. 148, 111029 (2021)

    Google Scholar 

  50. Gu, Y.Y., Aminakbari, N.: New optical soliton solutions for the variable coefficients nonlinear Schrödinger equation. Opt. Quant. Electron. 54(4), 255 (2022)

    Google Scholar 

  51. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91(2), 022904 (2015)

    Google Scholar 

  52. Duan, L., Zhao, L.C., Xu, W.H., Liu, C., Yang, Z.Y., Yang, W.L.: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects. Phys. Rev. E 95(4), 042212 (2017)

    MathSciNet  Google Scholar 

  53. Yu, W.T., Zhou, Q., Mirzazadeh, M., Liu, W.J., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)

    Google Scholar 

  54. Riaz, M.B., Atangana, A., Jahngeer, A., Jarad, F., Awrejcewicz, J.: New optical solitons of fractional nonlinear Schrödinger equation with the oscillating nonlinear coefficient A comparative study. Results Phys. 37, 105471 (2022)

    Google Scholar 

  55. Zeng, L.W., Zeng, J.H.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrodinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98(2), 985–995 (2019)

    Google Scholar 

  56. Cai, Y.J., Wu, J.W., Hu, L.T., Lin, J.: Nondegenerate solitons for coupled higher-order nonlinear Schrödinger equations in optical fibers. Phys. Scr. 96(9), 095212 (2021)

    Google Scholar 

  57. Mou, D.S., Dai, C.Q.: Nondegenerate solitons and collision dynamics of the variable-coefficient coupled higher-order nonlinear Schrödinger model via the Hirota method. Appl. Math. Lett. 133, 108230 (2022)

    Google Scholar 

  58. Porsezian, K., Shanmugha, S.P., Mahalingam, A.: Coupled higher-order nonlinear Schrödinger equations in nonlinear optics: Painleve analysis and integrability. Phys. Rev. E 50(2), 1543–1547 (1994)

    MathSciNet  Google Scholar 

  59. Nakkeeran, K., Porsezian, K., Sundaram, P.S., Mahalingam, A.: Optical solitons in N-coupled higher order nonlinear Schrödinger equations. Phys. Rev. Lett. 80(7), 1425–1428 (1998)

  60. Kilicman, A., Silambarasan, R.: Modified Kudryashov Method to Solve Generalized Kuramoto-Sivashinsky Equation. Symmetry 10(10), 527 (2018)

    Google Scholar 

  61. Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)

    Google Scholar 

  62. Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014, 135 (2014)

    MathSciNet  Google Scholar 

  63. Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random. Complex. 27(4), 628–636 (2017)

    MathSciNet  Google Scholar 

  64. Hosseini, K., Mayeli, P., Ansari, R.: Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Optik 130, 737–742 (2017)

    Google Scholar 

  65. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22, 378–385 (2009)

    MathSciNet  Google Scholar 

  66. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177–184 (2014)

    Google Scholar 

  67. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Soliton. Fract. 142, 110363 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Key R &D Program of China (Grant 2022YFA1604200), National Natural Science Foundation of China (Grant 11975001, 12075034) 12261131495), the Beijing Natural Science Foundation (Nos. JQ21019), and the Hebei Key Laboratory of Physics and Energy Technology under (Grant HBKLPET2023_03).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this research and to the writing of the manuscript. And all authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, H., Yang, H. et al. Study on propagation properties of fractional soliton in the inhomogeneous fiber with higher-order effects. Nonlinear Dyn 112, 1327–1337 (2024). https://doi.org/10.1007/s11071-023-09099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09099-x

Keywords

Navigation