Skip to main content
Log in

Adaptive critic design for enhanced control of waverider vehicles with nonaffine nonlinearities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a hybrid fuzzy-neural framework for the solution of waverider vehicles (WVs) flight enhanced control issue is addressed based on adaptive critic design. Hybrid enhanced controllers consisting of an action network and a critic network are developed. The action network, as the basic controller directly stemming from nonaffine nonlinearities of WVs, approximately yields enhanced control protocols. Further, the tracking performance is evaluated and strengthened to a higher degree of accuracy by the critic network. The boundedness of closed-loop system signals is ensured via Lyapunov synthesis. Numerical simulation results infer that highly precise tracking of reference commands is achieved in the presence of parametric perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

The experimental data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

m :

Vehicle mass

\({{\bar{\rho }}}\) :

Density of air

\({\bar{q}}\) :

Dynamic pressure

S :

Reference area

h :

Altitude

V :

Velocity

\(\gamma \) :

Flight-path angle

\(\theta \) :

Pitch angle

\(\alpha \) :

Angle of attack (\(\alpha =\theta -\gamma \))

Q :

Pitch rate

T :

Thrust

D :

Drag

L :

Lift

M :

Pitching moment

\({I_{{\text {yy}}}}\) :

Moment of inertia

\({\bar{c}}\) :

Aerodynamic chord

\({z_T}\) :

Thrust moment arm

\(\Phi \) :

Fuel equivalence ratio

\({\delta _e}\) :

Elevator angular deflection

\({N_i}\) :

ith generalized force

\(N_i^{{\alpha _j}}\) :

jth order contribution of \(\alpha \) to \({N_i}\)

\(N_i^0\) :

Constant term in \({N_i}\)

\(N_2^{{\delta _{\text {e}}}}\) :

Contribution of \({\delta _e}\) to \({N_2}\)

\({\beta _i}\left( {h,{\bar{q}}} \right) \) :

ith trust fit parameter

\({\eta _i}\) :

ith generalized elastic coordinate

\({\zeta _i}\) :

Damping ratio for elastic mode \({\eta _i}\)

\({\omega _i}\) :

Natural frequency for elastic mode \({\eta _i}\)

\(C_D^{{\alpha ^i}}\) :

ith order coefficient of \(\alpha \) in D

\(C_D^{\delta _{\text {e}}^i}\) :

ith order coefficient of \({\delta _e}\) in D

\(C_D^0\) :

Constant coefficient in D

\(C_L^{{\alpha ^i}}\) :

ith order coefficient of \(\alpha \) in L

\(C_L^{{\delta _{\text {e}}}}\) :

Coefficient of \({\delta _e}\) contribution in L

\(C_L^0\) :

Constant coefficient in L

\(C_{M,\alpha }^{{\alpha ^i}}\) :

ith order coefficient of \(\alpha \) in M

\(C_{M,\alpha }^0\) :

Constant coefficient in M

\(C_T^{{\alpha ^i}}\) :

ith order coefficient of \(\alpha \) in T

\(C_T^0\) :

Constant coefficient in T

\({h_0}\) :

Nominal altitude for air density approximation

\({{{\bar{\rho }}} _0}\) :

Air density at the altitude \({h_0}\)

\({{\tilde{\psi }} _i}\) :

Constrained beam coupling constant for \({\eta _i}\)

\({c_{\text {e}}}\) :

Coefficient of \({\delta _{\text {e}}}\) in M

\(1/{h_{\text {s}}}\) :

Air density decay rate

\({\Re _{ > 0}}\) :

The set of all real-positive numbers

\(\Re \) :

The set of all real numbers

\(: = \) :

Define as

References

  1. Bu, X., Lei, H.: A fuzzy wavelet neural network-based approach to hypersonic flight vehicle direct nonaffine hybrid control. Nonlinear Dyn. 94, 1657–1668 (2018)

    Article  Google Scholar 

  2. Bu, X., Hua, C., Lv, M., Wu, Z.: Flight control of waverider vehicles with fragility-avoidance prescribed performance. IEEE Trans. Aerosp. Electron. Syst. 59(5), 5248–5261 (2023)

    Google Scholar 

  3. Guo, Z., Guo, J., Zhou, J.: Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1279–1289 (2020)

    Article  Google Scholar 

  4. Bu, X., Jiang, B., Lei, H.: Low-complexity fuzzy neural control of constrained waverider vehicles via fragility-free prescribed performance approach. IEEE Trans. Fuzzy Syst. 31(7), 2127–2139 (2023)

    Article  Google Scholar 

  5. Guo, J., Peng, Q., Guo, Z.: SMC-based integrated guidance and control for beam riding missiles with limited LBPU. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2969–2978 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bu, X., Lv, M., Lei, H., Cao, J.: Fuzzy neural pseudo control with prescribed performance for waverider vehicles: a fragility-avoidance approach. IEEE Trans. Cybern. 53(8), 4986–4999 (2023)

    Article  Google Scholar 

  7. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control. Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  8. Lv, M., Li, Y., Pan, W., Baldi, S.: Finite-time fuzzy adaptive constrained tracking control for hypersonic flight vehicles with singularity-free switching. IEEE/ASME Trans. Mechatron. 27(3), 1594–1605 (2022)

    Article  Google Scholar 

  9. Bu, X., Jiang, B., Lei, H.: Performance guaranteed finite-time non-affine control of waverider vehicles without function-approximation. IEEE Trans. Intell. Transp. Syst. 24(3), 3252–3262 (2023)

    Article  Google Scholar 

  10. Ding, Y., Yue, X., Chen, G., Si, J.: Review of control and guidance technology on hypersonic vehicle. Chin. J. Aeronaut. 35(7), 1–18 (2022)

    Article  Google Scholar 

  11. Lv, J., Wang, C., Kao, Y.: Adaptive fixed-time quantized fault-tolerant attitude control for hypersonic reentry vehicle. Neurocomputing 520, 386–399 (2023)

    Article  Google Scholar 

  12. Wu, H., Feng, S., Liu, Z., Guo, L.: Disturbance observer based robust mixed H2/\({H_{\infty }}\) fuzzy tracking control for hypersonic vehicles. Fuzzy Sets Syst. 306, 118–136 (2017)

    Article  Google Scholar 

  13. Chen, Q., Wang, J., Ai, J.: L\(_1\) adaptive controller design for hypersonic formation flight. Science China Technol. Sci. 59(10), 1597–1608 (2016)

    Article  Google Scholar 

  14. Li, Y., Sun, L., Qu, X., Tan, W.: Acceleration measurement-based incremental nonlinear flight control for air-breathing hypersonic vehicles. Aerosp. Sci. Technol. 58, 235–247 (2016)

    Article  Google Scholar 

  15. Wu, G., Meng, X.: Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 54, 174–182 (2016)

    Article  Google Scholar 

  16. Wang, F., Zou, Q., Hu, C., Zong, Q.: Disturbance observer-based dynamic surface control design for a hypersonic vehicle with input constraints and uncertainty. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 230(6), 522–536 (2016)

    Google Scholar 

  17. Zhang, Y., Li, R., Xue, T., Lei, Z.: Exponential sliding mode tracking control via back-stepping approach for a hypersonic vehicle with mismatched uncertainty. J. Franklin Inst. 353, 2319–2343 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Wu, Y., Dong, X.: Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer. Nonlinear Dyn. 81, 1489–1510 (2015)

    Article  Google Scholar 

  19. Bu, X., Jiang, B., Lei, H.: Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation. IEEE Trans. Aerosp. Electron. Syst. 58(4), 3538–3548 (2022)

    Article  Google Scholar 

  20. Bu, X., Qi, Q., Jiang, B.: A simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft. IEEE Trans. Fuzzy Syst. 30(7), 2529–2537 (2022)

    Article  Google Scholar 

  21. Bu, X., Qi, Q.: Fuzzy optimal tracking control of hypersonic flight vehicles via single-network adaptive critic design. IEEE Trans. Fuzzy Syst. 30(1), 270–278 (2022)

    Article  Google Scholar 

  22. Guo, Z., Ma, Q., Guo, J., Zhao, B., Zhou, J.: Performance-involved coupling effect-triggered scheme for robust attitude control of HRV. IEEE/ASME Trans. Mechatron. 25(3), 1288–1298 (2020)

    Article  Google Scholar 

  23. Jiao, X., Jiang, J.: Design of interval type-2 fuzzy sliding mode controller for hypersonic aircraft. J. Autom. Control Eng. 4(2), 123–126 (2016)

  24. An, H., Liu, J., Wang, C., Wu, L.: Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron. 21(3), 1680–1691 (2016)

    Article  Google Scholar 

  25. An, H., Liu, J., Wang, C., Wu, L.: Disturbance observer-based anti-windup control for air-breathing hypersonic vehicles. IEEE Trans. Industr. Electron. 63(5), 3038–3049 (2016)

  26. Wang, F.Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction. IEEE Comput. Intell. Mag. 4(2), 39–47 (2009)

    Article  Google Scholar 

  27. Hendzel, Z.: An adaptive critic neural network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50, 849–855 (2007)

    Article  Google Scholar 

  28. Lin, C.: Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: an LMI approach. Inf. Sci. 177, 4934–4946 (2007)

    Article  MathSciNet  Google Scholar 

  29. Wu, X., Wang, Y., Dang, X.: Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network. Fuzzy Sets Syst. 235, 62–82 (2014)

    Article  MathSciNet  Google Scholar 

  30. Bu, X., Wang, Q., Zhang, Y., He, G.: Concise neural non-affine control of air-breathing hypersonic vehicles subject to parametric uncertainties. Int. J. Aerosp. Eng. (2017). https://doi.org/10.1155/2017/1374932

    Article  Google Scholar 

  31. Luo, Y., Sun, Q., Zhang, H., Cui, L.: Adaptive critic design-based robust neural network control for nonlinear distributed parameter systems with unknown dynamics. Neurocomputing 148, 200–208 (2015)

    Article  Google Scholar 

  32. Zhang, S., Li, C., Zhu, J.: Composite dynamic surface control of hypersonic flight dynamics using neural networks. Science China Inf. Sci. 58, 070203 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by Young Talent Support Project for Science and Technology (Grant No. 18-JCJQ-QT- 007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwei Bu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, X., Ma, H. Adaptive critic design for enhanced control of waverider vehicles with nonaffine nonlinearities. Nonlinear Dyn 112, 1123–1139 (2024). https://doi.org/10.1007/s11071-023-09085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09085-3

Keywords

Navigation