Skip to main content
Log in

A novel bio-inspired kangaroo leg structure for low-frequency vibration isolation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspired by the vibration mitigation effect of kangaroo’s legs, a novel bio-inspired kangaroo leg structure (BKLS) is proposed for low-frequency vibration isolation. The BKLS is composed of two main rods with different lengths (simulating the calf bone and thigh bone), two linear springs (simulating the internal and external muscles) and two auxiliary rods. Based on the Lagrange principle, the dynamic model is established to describe the nonlinear effects of BKLS, which are mainly contributed by the internal and external springs and the rotary joints. The corresponding displacement transmissibility derived with the harmonic balance method. The equivalent nonlinear stiffness shows that the proposed BKLS possesses favorable of high-static and low-dynamic stiffness (HSLDS) properties over a wide displacement range. The HSLDS range and bearing capacity can be tuned easily by initial assembly angle, rod length ratio, and spring stiffness ratio. Moreover, experiments were carried out to verify the dynamic predictions and demonstrate that the proposed BKLS indeed possess superior low-frequency isolation performance without sacrificing the carrying capacity, which can effectively suppress vibration with frequencies higher than 1.06 Hz. Regardless of the vibration isolation quality and excitation conditions, it can be designed/adjusted on demand by selecting appropriate structural parameters to achieve the best isolation performance. The innovative and simple BKLS provides an effective method for low-frequency vibration isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data included in this study are available from the corresponding author on reasonable request.

Code availability

No applicable.

References

  1. Lee, J.H., Kim, K.J.: Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. J. Sound Vib. 301, 909–926 (2007)

    Google Scholar 

  2. Balaji, P.S., Karthik SelvaKumar, K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9, 183–213 (2021)

    Google Scholar 

  3. Rivin, E.: Passive vibration isolation. Appl. Mech. Rev. 57, B31–B32 (2020)

    Google Scholar 

  4. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Google Scholar 

  5. Xu, D.L., Zhang, Y.Y., Zhou, J.X., Zhang, J.: Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness. J. Vib. Shock 33(11), 208–213 (2014)

    Google Scholar 

  6. Wu, L., Wang, Y., Zhai, Z., Yang, Y., Krishnaraju, D., Lu, J., Wu, F., Wang, Q., Jiang, H.: Mechanical metamaterials for full-band mechanical wave shielding. Appl. Mater. Today 20, 100671 (2020)

    Google Scholar 

  7. Wen, G., He, J., Liu, J., Lin, Y.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021)

    Google Scholar 

  8. Zeng, R., Yin, S., Wen, G.L.: A non-smooth quasi-zero-stiffness isolator with displacement constraints. Int. J. Mech. Sci. 225, 107351 (2022)

    Google Scholar 

  9. Zhao, F., Cao, S., Luo, Q., Li, L., Ji, J.: Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dyn. 108(4), 3313–3330 (2022)

    Google Scholar 

  10. Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88, 635–654 (2017)

    Google Scholar 

  11. Zhao, F., Ji, J.C., Ye, K., Luo, Q.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal. Pr. 144, 106975 (2020)

    Google Scholar 

  12. Fulcher, B., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2015)

    Google Scholar 

  13. Cai, C., Zhou, J., Wu, .L, Wang, K., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020)

  14. Wang, Q., Zhou, J., Xu, D., Ouyang, H.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal. Pr. 139, 106633 (2020)

    Google Scholar 

  15. Ye, K., Ji, J.C., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 115198 (2020)

    Google Scholar 

  16. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 330, 154–154 (2011)

    Google Scholar 

  17. Wang, M., Hu, Y., Sun, Y., Ding, J., Pu, H., Yuan, S., Luo, J.: An adjustable low-frequency vibration isolation Stewart platform based on electromagnetic negative stiffness. Int. J. Mech. Sci. 181, 105714 (2020)

    Google Scholar 

  18. Liu, S., Peng, G., Jin, K.: Design and characteristics of a novel QZS vibration isolation system with origami-inspired corrector. Nonlinear Dyn. 106, 255–277 (2021)

    Google Scholar 

  19. Liu, S., Peng, G., Li, Z., Li, W., Sun, L.: Low-frequency vibration isolation via an elastic origami-inspired structure. Int. J. Mech. Sci. 260, 108622 (2023)

    Google Scholar 

  20. Kim, K.R., You, Y.H., Ahn, H.J.: Optimal design of a QZS isolator using flexures for a wide range of payload. Int. J. Precis. Eng. Manuf. 14, 911–917 (2013)

    Google Scholar 

  21. Wang, Q., Zhou, J., Wang, K., Lin, Q., Xu, D., Wen, G.: A compact quasi-zero-stiffness device for vibration suppression and energy harvesting. Int. J. Mech. Sci. 250, 108284 (2023)

    Google Scholar 

  22. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Google Scholar 

  23. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009)

    Google Scholar 

  24. Fan, H., Yang, L., Tian, Y., Wang, Z.: Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 243, 112244 (2020)

    Google Scholar 

  25. Dalela, S., Balaji, P.S., Jena, D.P.: Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn. 108(3), 1931–1971 (2022)

    Google Scholar 

  26. Zhang, Q., Guo, D., Hu, G.: Tailored Mechanical Metamaterials with Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation. Adv. Funct. Mater. 31(33), 210428 (2021)

    Google Scholar 

  27. Zhou, J., Wang, X., Xu, D.: Bishop, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

  28. Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87, 633–646 (2017)

    Google Scholar 

  29. Zuo, S., Wang, D., Zhang, Y., Luo, Q.: Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 220, 107146 (2022)

    Google Scholar 

  30. Zheng, Y., Li, Q., Yan, B., Luo, Y.Z., X.: A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. J. Sound Vib. 422, 390–408 (2018)

    Google Scholar 

  31. Wu, J., Zeng, L., Han, B., Zhou, Y., Luo, X., Li, X., Chen, X., Jiang, W.: Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. Int. J. Mech. Sci. 216, 106980 (2022)

    Google Scholar 

  32. Sadeghi, S., Li, S.: Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Mater. Struct. 28, 065006 (2019)

    Google Scholar 

  33. Han, H., Sorokin, V., Tang, L., Cao, D.: Origami-based tunable mechanical memory metamaterial for vibration attenuation. Mech. Syst. Signal. Pr. 188, 110033 (2023)

    Google Scholar 

  34. Ge, Y., Zou, H.X., Wang, S., Zhao, L.C.: Zhang, W.M. Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73(2), 020801 (2021)

  35. Zhang, T., Shi, P., Yue, X.: Modeling of the bio-inspired vibration isolation platform supported by X-structures via D’Alembert’s principle of virtual power. Mech. Syst. Signal. Pr. 179, 109351 (2022)

    Google Scholar 

  36. Zhou, S., Liu, Y., Jiang, Z., Ren, Z.: Nonlinear Dyn.amic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dyn. 110(1), 153–175 (2022)

  37. Yu, Y., Li, F., Yao, G.: Vibration response and isolation of X-shaped two-stage vibration isolators: Analysis of multiple parameters. Nonlinear Dyn. 1–20 (2023)

  38. Bian, J., Jing, X.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020)

    Google Scholar 

  39. Jing, X., Chai, Y., Chao, X., Bian, J.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech. Syst. Signal. Pr. 170, 108267 (2021)

    Google Scholar 

  40. Feng, X., Jing, X., Guo, Y.: Vibration isolation with passive linkage mechanisms. Nonlinear Dyn. 106, 1891–1927 (2021)

    Google Scholar 

  41. Ling, P., Miao, L., Zhang, W., Wu, C., Yan, B.: Cockroach-inspired structure for low-frequency vibration isolation. Mech. Syst. Signal. Pr. 171, 108955 (2022)

    Google Scholar 

  42. Yan, G., Zou, H.X., Wang, S., Zhao, C., Zhang, W.M.: Bio-inspired toe-like structure for low-frequency vibration isolation. Mech. Syst. Signal. Pr. 162, 108010 (2022)

    Google Scholar 

  43. Jin, G., Wang, Z., Yang, T.: Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Appl. Math. Mech. 43(6), 813–824 (2022)

    MathSciNet  Google Scholar 

  44. Niu, M.Q., Chen, L.Q.: Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal. Pr. 179, 109348 (2022)

    Google Scholar 

  45. Song, X., Chai, Z., Zhang, Y., Zang, J., Xu, K.: Nonlinear vibration isolation via an innovative active bionic variable stiffness adapter (ABVSA). Nonlinear Dyn. 109(2), 353–370 (2022)

    Google Scholar 

  46. Fang, S., Chen, K., Lai, Z., Zhou, S., Yurchenko, D., Liao, W.H.: A bio-inspired system for simultaneous vibration isolation and energy harvesting in post-capture spacecraft. Mech. Syst. Signal. Pr. 199, 110466 (2023)

    Google Scholar 

  47. Deng, T., Wen, G., Ding, H., Lu, Z.Q., Chen, L.Q.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal. Pr. 145, 106967 (2020)

    Google Scholar 

  48. Sun, X., Wang, F., Xu, J.: A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. Int. J. Mech. Sci. 193, 106166 (2021)

    Google Scholar 

  49. Zhang, R., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Google Scholar 

  50. Zhang, R., Li, M., Yin, H.: Rogue wave solutions and the bright and dark solitons of the (3+ 1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  51. Zhang, R., Li, M.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

  52. Alkhazzan, A., Jiang, P., Baleanu, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math. Meth. Appl. Sci. 41(18), 9321–9334 (2018)

    MathSciNet  Google Scholar 

  53. Khan, H., Tunç, C., Khan, A.: Stability results and existence theorems for nonlinear delay-fractional differential equations with $\varphi^*_p $-operator. J. Appl. Anal. Comput. 10(2), 584–597 (2020)

    MathSciNet  Google Scholar 

  54. Khan, A., Alshehri, H., Gómez-Aguilar, J., Khan, Z., Fernández-Anaya, G.: A predator–prey model involving variable-order fractional differential equations with Mittag-Leffler kernel. Adv. Differ. Equ. 2021(1), 1–18 (2021)

    MathSciNet  Google Scholar 

  55. Guo, H., Chen, Y.: Supercritical and subcritical Hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic\hypersonic flow. Nonlinear Dyn. 67, 2637–2649 (2012)

    Google Scholar 

  56. Zhang, R., Bilige, S., Liu, J., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    Google Scholar 

  57. Zhang, R., Li, M., Gan, J., Li, Q., Lan, Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MathSciNet  Google Scholar 

  58. Zhang, R., Li, M., Cherraf, A., Vadyala, S.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Google Scholar 

  59. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020(1), 1–15 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 12172388).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, H., Sun, X., Wu, Q. et al. A novel bio-inspired kangaroo leg structure for low-frequency vibration isolation. Nonlinear Dyn 112, 1797–1814 (2024). https://doi.org/10.1007/s11071-023-09082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09082-6

Keywords

Navigation