Skip to main content
Log in

Nonlinear dynamic analysis of vortex-induced resonance of a flexible cable

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the nonlinear dynamics of a stay cable in cable-stayed bridges caused by vortex-induced vibration (VIV). The equation of the planar transverse motion of the stay cable under uniform wind is developed by using the van der Pol wake oscillator to simulate the wind load. The Galerkin method is applied to discretize partial differential equations into ordinary differential equations. Then, the method of multi-scale (MMS) is used to derive the modulation equations of the nonlinear coupling system with the primary resonance response, and the results are verified by the Runge–Kutta method. Parameters such as the damping ratio and the sag-to-span ratio of the stay cable, the aerodynamic parameters, and the coupling parameters on the frequency response are investigated. The results show that large-amplitude vibration occurs due to the high energy transfer between cable and wake in the lock-in region though the coupling effect of the system is very weak for low-order VIV. The structure parameters of the cable and the van der Pol parameters can have a great influence on the nonlinear dynamic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jafari, M., Hou, F., Abdelkefi, A.: Wind-induced vibration of structural cables. Nonlinear Dyn. 100, 351–421 (2020)

    Google Scholar 

  2. Chen, Z., Li, S., Deng, Y., Wang, Y., An, M., Yang, C.: Recent challenges and advances on study of wind-induced vibrations of bridge cables. J. Hunan Univ. 49, 1–8 (2022). (in Chinese)

    Google Scholar 

  3. Zuo, D., Jones, N.P., Main, J.A.: Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment. J. Wind Eng. Ind. Aerod. 96, 1124–1133 (2008)

    Google Scholar 

  4. Denoel, V., Andrianne, T.: Real-scale observations of vortex induced vibrations of stay-cables in the boundary layer. Proc. Eng. 199, 3109–3114 (2017)

    Google Scholar 

  5. Chen, W.L., Gao, D.L., Laima, S., Li, H.: A field investigation on vortex-induced vibrations of stay cables in a cable-stayed bridge. Appl. Sci. 9, 4556 (2019)

    Google Scholar 

  6. Liu, Z., Shen, J., Li, S., Chen, Z., Ou, Q., Xin, D.: Experimental study on high-mode vortex-induced vibration of stay cable and its aerodynamic countermeasures. J. Fluid Struct. 100, 103195 (2021)

    Google Scholar 

  7. Chen, W.L., Zhang, Q.Q., Li, H., Hu, H.: An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow. J. Fluid Struct. 54, 297–311 (2015)

    Google Scholar 

  8. Gao, D.L., Chen, W.L., Zhang, R.T., Huang, Y.W., Li, H.: Multi-modal vortex- and rain-wind- induced vibrations of an inclined flexible cable. Mech. Syst. Signal Proc. 118, 245–258 (2019)

    Google Scholar 

  9. Liu, Z., Li, S., Wang, L., Yan, B., Zhang, R., Chen, Z.: Experimental investigation on high-mode vortex-induced vibration of a flexible stay cable in smooth flow. J. Bridge Eng. 27, 04022068 (2022)

    Google Scholar 

  10. Wang, J., Fan, D., Lin, K.: A review on flow-induced vibration of offshore circular cylinders. J. Hydrodyn. 32, 415–440 (2020)

    Google Scholar 

  11. Zhao, X., Tan, M., Zhu, W., Shao, Y., Li, Y.: Study of vortex-induced vibration of a pipe-in-pipe system by using a wake oscillator model. J. Environ. Eng. 149, 04023007 (2023)

    Google Scholar 

  12. Bishop, R.E.D., Hassan, A.Y.: The lift and drag forces on a circular cylinder in a flowing fluid. Royal Soc. London Proc. 277, 32–50 (1964)

    Google Scholar 

  13. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J .Eng. Mech. Div. 96, 577–591 (1970)

    Google Scholar 

  14. Skop, R., Griffin, O.: A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27, 225–233 (1973)

    Google Scholar 

  15. Iwan, W.D., Blevins, R.: A model for vortex induced oscillation of structures. J. Appl. Mech. 41, 581–586 (1974)

    Google Scholar 

  16. Iwan, W.D.: The vortex-induced oscillation of non-uniform structural systems. J. Sound Vib. 79, 291–301 (1981)

    Google Scholar 

  17. Larsen, A.: A generalized model for assessment of vortex-induced vibrations of flexible structures. J. Wind Eng. Ind. Aerod. 57, 281–294 (1995)

    Google Scholar 

  18. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluid Struct. 19, 123–140 (2004)

    Google Scholar 

  19. Facchinetti, M.L., de Langre, E., Biolley, F.: Vortex-induced travelling waves along a cable. Eur. J. Mech. B-Fluids 23, 199–208 (2004)

    Google Scholar 

  20. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85, 1134–1141 (2007)

    Google Scholar 

  21. Violette, R., de Langre, E., Szydlowski, J.: A linear stability approach to vortex-induced vibrations and waves. J. Fluid Struct. 26, 442–466 (2010)

    Google Scholar 

  22. Gao, Y., Zou, L., Zong, Z., Takagi, S., Kang, Y.: Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model. Ocean Eng. 171, 157–171 (2019)

    Google Scholar 

  23. Gao, Y., Yang, B., Zou, L., Zong, Z., Zhang, Z.: Vortex-induced vibrations of a long flexible cylinder in linear and exponential shear flows. China Ocean Eng. 33, 44–56 (2019)

    Google Scholar 

  24. Srinil, N.: Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities. J. Fluid Struct. 26, 1098–1122 (2010)

    Google Scholar 

  25. Ma, B., Srinil, N.: Prediction model for multidirectional vortex-induced vibrations of catenary riser in convex/concave and perpendicular flows. J. Fluid Struct. 117, 103826 (2023)

    Google Scholar 

  26. Luongo, A., Rega, G., Vestroni, F.: A perturbational approach to the study of nonlinear free vibrations of suspended cables. Proc. 6th Ital. Congr. Theoret. Appl. Mech. 5, 48–59 (1982)

    Google Scholar 

  27. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Nonlinear Mech. 22, 497–509 (1987)

    Google Scholar 

  28. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Nonlinear Mech. 27, 233–250 (1992)

    Google Scholar 

  29. Gattulli, V., Pasca, M., Vestroni, F.: Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control. Nonlinear Dyn. 14, 139–156 (1997)

    Google Scholar 

  30. Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)

    Google Scholar 

  31. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. A. 341, 299–315 (1974)

    Google Scholar 

  32. Rega, G.: Nonlinear vibrations of suspended cables-part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Google Scholar 

  33. Rega, G.: Nonlinear vibrations of suspended cables-part II: deterministic phenomena. Appl. Mech. Rev. 57, 479–513 (2004)

    Google Scholar 

  34. Gupta, S.K., Malla, A.L., Barry, O.R.: Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers. Nonlinear Dyn. 103, 27–47 (2021)

    Google Scholar 

  35. Tamura, Y.: Mathematical models for understanding phenomena: vortex-induced vibrations. Jpn. Archit. Rev. 3, 398–422 (2020)

    Google Scholar 

  36. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Linear and nonlinear dynamics of suspended cable considering bending stiffness. J. Vib. Control 21, 1487–1505 (2013)

    MathSciNet  Google Scholar 

  37. Lighthill, J.: Fundamentals concerning wave loading on offshore structures. J. Fluid Mech. 173, 667–681 (1986)

    Google Scholar 

  38. Song, F., Lin, L., Ling, G.: The study of vortex-induced vibrations by computation using coupling model of structure and wake oscillator. Chin. J. Theoret. Appl. Mech. 42, 357–365 (2010). (in Chinese)

    Google Scholar 

  39. Kang, H., Zhu, H., Zhao, Y., Yi, Z.: In-plane non-linear dynamics of the stay cables. Nonlinear Dyn. 73, 1385–1398 (2013)

    MathSciNet  Google Scholar 

  40. de Langre, E.: Frequency lock-in is caused by coupled-mode flutter. J. Fluid Struct. 22, 783–791 (2006)

    Google Scholar 

  41. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluid Struct. 19, 389–447 (2004)

    Google Scholar 

  42. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2009)

    Google Scholar 

  43. Williamson, C.H.K., Govardhan, R.: vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    MathSciNet  Google Scholar 

  44. Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluid Struct. 17, 57–96 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 12202109, and 11972151), Specific Research Project of Guangxi for Research Bases and Talents (No. AD22035190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houjun Kang or Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Identification of the natural frequencies and mode shapes of the cable is achieved by discarding the damping, excitation, and nonlinear factors in Eqs. (15) and (16). The nth mode shape and frequency of the cable are defined as follows for the antisymmetric mode.

$$ \phi_{n} (x) = \sqrt 2 \sin \omega_{{\text{n}}} x,{\kern 1pt} \quad \omega_{{\text{n}}} = n\pi ,\quad {\kern 1pt} (n = 2,4,6 \ldots ) $$
(A1)

Moreover, the symmetric mode shapes are described as:

$$ \phi_{n} (x) = \chi \left( {1 - \cos \omega_{{\text{n}}} x - \sin \omega_{{\text{n}}} x\tan \frac{{\omega_{{\text{n}}} }}{2}} \right),\quad (n = 1,3,5...) $$
(A2)

where the normalizing conditions provide the value of χ. Then, the natural frequency in Eq (A2) is acquired by solving the transcendental equation as follows:

$$ \tan \frac{{\omega_{{\text{n}}} }}{2} = \frac{{\omega_{{\text{n}}} }}{2} - \frac{{\omega_{{\text{n}}}^{3} }}{{2\lambda^{2} }} $$
(A3)

where λ is the Irvine parameter and is expressed as λ2 = 64αcη2f.

The modal functions for the van der Pol oscillator φn(x) are introduced as [19]:

$$ \varphi_{n} (x) = \sqrt 2 \sin n\pi x,\;\;(n = 1,2,3...) $$
(A4)

Coefficients of Eqs. (19) and (20):

\(\xi_{n} = \int_{0}^{1} {\xi \phi_{n} \phi_{n} {\text{d}}x}\), \( \Lambda _{{nij}} = \int_{0}^{1} {\phi _{n} \left[ {\alpha_{\text{c}} \phi _{i} ^{{\prime \prime }} \int_{0}^{1} {y^{\prime } \phi _{j} ^{\prime } {\text{d}}x + } \alpha_{\text{c}} y^{{\prime \prime }} \int_{0}^{1} {(\phi _{i} ^{\prime } \phi _{j} ^{\prime } {\text{/}}2){\text{d}}x} } \right]} {\text{d}}x \).

\( \Gamma _{{nijh}} = \int_{0}^{1} {\phi _{n} \left[ {\alpha_c \phi _{i} ^{{\prime \prime }} \int_{0}^{1} {(\phi _{j} ^{\prime } \phi _{h} ^{\prime } {\text{/}}2){\text{d}}x} } \right]} {\text{d}}x \),

\(d_{nijk} = \int_{0}^{1} {\phi_{n} \phi_{i} \phi_{j} \phi_{k} {\text{d}}x}\), \(M_{i} = \int_{0}^{1} {M\phi_{n} \varphi_{i} {\text{d}}x}\), \(N_{i} = \int_{0}^{1} {N\phi_{i} \varphi_{n} {\text{d}}x}\).

Coefficients of Eqs. (4952):

\(c_{11} = - \frac{{sd_{nnnn} M_{n} \omega_{{\text{s}}}^{3} }}{{32\omega_{{\text{n}}}^{2} }}\), \(c_{12} = \frac{{M_{n} \omega_{{\text{s}}}^{2} }}{{2\omega_{{\text{n}}} }} - \frac{{\sigma M_{n} \omega_{{\text{s}}}^{2} }}{{4\omega_{{\text{n}}}^{2} }}\), \(c_{13} = \frac{{sM_{n} \omega_{{\text{s}}}^{3} }}{{8\omega_{{\text{n}}}^{2} }}\), \(c_{14} = - \frac{{sd_{nnnn} M_{n} \omega_{{\text{s}}}^{3} }}{{32\omega_{{\text{n}}}^{2} }}\),

\(c_{15} = \frac{{\sigma M_{n} \omega_{{\text{s}}}^{2} }}{{4\omega_{{\text{n}}}^{2} }} - \frac{{M_{n} \omega_{{\text{s}}}^{2} }}{{2\omega_{{\text{n}}} }}\), \(c_{16} = \frac{{sM_{n} \omega_{{\text{s}}}^{3} }}{{8\omega_{{\text{n}}}^{2} }}\), \(c_{17} = - \left( {\frac{{5\Lambda_{nnn}^{2} }}{{12\omega_{{\text{n}}}^{3} }} + \frac{{3\Gamma_{nnnn} }}{{8\omega_{{\text{n}}} }}} \right)\), \(c_{18} = \frac{1}{8}M_{n} N_{n} \omega_{{\text{s}}}\),

\(c_{19} = - \frac{{sd_{nnnn} N_{n} \omega_{{\text{n}}}^{2} }}{{32\omega_{{\text{s}}} }}\), \(c_{20} = - \frac{1}{8}sd_{nnnn} \omega_{{\text{s}}}\), \(c_{21} = \frac{{\sigma N_{n} \omega_{{\text{n}}}^{2} }}{{4\omega_{{\text{s}}}^{2} }} + \frac{{N_{n} \omega_{{\text{n}}}^{2} }}{{2\omega_{{\text{s}}} }}\), \(c_{22} = \frac{{sN_{n} \omega_{{\text{n}}}^{2} }}{{8\omega_{{\text{s}}} }}\).

\(c_{23} = \frac{1}{2}s\omega_{{\text{s}}}\), \(c_{24} = - \frac{{7s^{2} d_{nnnn}^{2} \omega_{{\text{s}}} }}{256}\), \(c_{25} = \frac{1}{8}s^{2} d_{nnnn} \omega_{{\text{s}}}\), \(c_{26} = \frac{{N_{n} \omega_{{\text{n}}}^{2} }}{{2\omega_{{\text{s}}} }} + \frac{{\sigma N_{n} \omega_{{\text{n}}}^{2} }}{{4\omega_{{\text{s}}}^{2} }}\).

\(c_{27} = \frac{{3sd_{nnnn} N_{n} \omega_{{\text{n}}}^{2} }}{{32\omega_{{\text{s}}} }}\), \(c_{28} = - \frac{{sN_{n} \omega_{{\text{n}}}^{2} }}{{8\omega_{{\text{s}}} }}\), \(c_{29} = \frac{1}{8}M_{n} N_{n} \omega_{{\text{n}}} - \frac{1}{2}M_{n} N_{n} \omega_{{\text{s}}} - \frac{{s^{2} \omega_{{\text{s}}} }}{8}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Y., Jiang, Y., Kang, H. et al. Nonlinear dynamic analysis of vortex-induced resonance of a flexible cable. Nonlinear Dyn 112, 793–810 (2024). https://doi.org/10.1007/s11071-023-09073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09073-7

Keywords

Navigation