Skip to main content
Log in

Calculation of dynamic responses of railway sleepers on a nonlinear foundation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The safety of a passing train depends on different factors, of which one of the most important is the behavior of the foundation. Therefore, the effects of the nonlinearity of ballast on the dynamic responses of the railway track are a key research interest. In this paper, a new model of railway sleepers posed on a nonlinear foundation has been developed. By coupling the finite element method (FEM) of the sleeper with an analytical model of the periodically supported beam model, the dynamic equation of the sleeper is developed. On the other hand, by considering a periodic series of moving loads, this equation can be transformed to a forced nonlinear oscillation. Iteration procedures have been built to calculate the periodic solution. This method has demonstrated a good convergence of results by comparison with the analytical solution in the linear case. The influence of the nonlinear foundation has been investigated by two examples: cubic-nonlinear and bi-linear foundations. The parametric studies demonstrate that numerical results converge with a small number of iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kriloff, A.: Uber die erzwungenen schwingungen von gleichformigen elastischen staben. Math. Ann. 61(2), 211–234 (1905)

    Article  MathSciNet  Google Scholar 

  2. Timoshenko, S.: Uber die erzwungenen schwingungen von gleichformigen elastischen staben. Z. Angew. Math. Phys. 59(2), 162–203 (1911)

    Google Scholar 

  3. Frýba, L.: Vibration of Solids and Structures under Moving Loads. Springer, Dordrecht, Czech (1972)

    Book  Google Scholar 

  4. Timoshenko, S., Young, D., Weaver, W.: Vibration Problems in Engineering. Wiley & Son, (1991)

  5. Wang, T.M., Stephens, J.E.: Natural frequencies of timoshenko beams on pasternak foundations. J. Sound Vib. 51(2), 149–155 (1977)

    Article  Google Scholar 

  6. Adams, G.G.: Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving loads. Int. J. Mech. Sci. 37(7), 773–781 (1995)

    Article  Google Scholar 

  7. Ichikawa, M., Miyakawa, Y., Matsuda, A.: Vibration analysis of the continuous beam subjected to moving mass. J. Sound Vib. 230(3), 493–506 (2000)

    Article  Google Scholar 

  8. Sun, L.: A closed-form solution of a bernoulli-euler beam on a viscoelastic foundation under harmonic line loads. J. Sound Vib. 242(4), 619–627 (2001)

    Article  Google Scholar 

  9. Chen, Y.-H., Huang, Y.-H.: Dynamic characteristics of infinite and finite railways to moving loads. J. Eng. Mech., 129, 987–995, 09 (2003)

  10. Mallik, A.K., Chandra, Sarvesh, Singh, Avinash B.: Steady-state response of an elastically supported infinite beam to a moving load. J. Sound Vib. 291(3), 1148–1169 (2006)

    Article  Google Scholar 

  11. Faruk Fırat Çalım: Dynamic analysis of beams on viscoelastic foundation. Eur. J. Mech. A. Solids 28(3), 469–476 (2009)

    Article  Google Scholar 

  12. Varandas, José N., Hölscher, Paul, Silva, Manuel A.G..: Dynamic behaviour of railway tracks on transitions zones. Comput. Struct. 89(13), 1468–1479 (2011)

    Article  Google Scholar 

  13. Mead, D.J.: Free wave propagation in periodically supported, infinite beams. J. Sound Vib. 11(2), 181–197 (1970)

    Article  Google Scholar 

  14. Mead, D.J.: A new method of analyzing wave propagation in periodic structures; applications to periodic timoshenko beams and stiffened plates. J. Sound Vib. 104(1), 9–27 (1986)

    Article  Google Scholar 

  15. Mead, D.J.: The response of infinite periodic beams to point harmonic forces: a flexural wave analysis. J. Sound Vib. 144(3), 507–529 (1991)

    Article  Google Scholar 

  16. Mead, D.J.: Wave propagation in continuous periodic structures : research contributions from southampton, 1964–1995. J. Sound Vib. 190(3), 495–524 (1996)

    Article  Google Scholar 

  17. Belotserkovskiy, P.M.: On the oscillations of infinite periodic beams subjected to a moving concentrated force. J. Sound Vib. 193(3), 705–712 (1996)

    Article  Google Scholar 

  18. Metrikine, A.V., Popp, K.: Vibration of a periodically supported beam on an elastic half-space. Eur. J. Mech. A. Solids 18(4), 679–701 (1999)

    Article  Google Scholar 

  19. Vostroukhov, A.V., Metrikine, A.V.: Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track. Int. J. Solids Struct. 40(21), 5723–5752 (2003)

    Article  Google Scholar 

  20. Tran, L.-H., Hoang, T., Foret, G., Duhamel, D.: Calculation of the dynamic responses of a railway track on a non-uniform foundation. Journal of Vibration and Control, page 10775463221099353, (2023)

  21. Tran, L.-H., Hoang, T., Duhamel, D., Foret, G., Messad, S., Loaec, A.: Analytical model of the dynamics of railway sleeper. pages 3937–3948, (2017). 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN)

  22. Tran, L.-H., Hoang, T., Duhamel, D., Foret, G., Messad, S., Loaec, A.: A fast analytic method to calculate the dynamic response of railways sleepers. J. Vib. Acoustics, 141(1), 08 (2018). 011005

  23. Tran, L.-H., Hoang, T., Duhamel, D., Foret, G., Messad, S., Loaec, A.: Influence of non-homogeneous foundations on the dynamic responses of railway sleepers. Int. J. Struct. Stab. Dyn. 21(01), 2150002 (2021)

    Article  MathSciNet  Google Scholar 

  24. Ding, Hu., Chen, Li-Qun., Yang, Shao-Pu.: Convergence of galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J. Sound Vib. 331(10), 2426–2442 (2012)

    Article  Google Scholar 

  25. Ding, Hu., Shi, Kang Li, Chen, Li-Qun.: Dynamic response of an infinite timoshenko beam on a nonlinear viscoelastic foundation to a moving load. Nonlinear Dyn. 73(1), 285–298 (2012)

    MathSciNet  Google Scholar 

  26. Kargarnovin, M.H., Younesian, D., Thompson, D.J., Jones, C.J.C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83(23), 1865–1877 (2005)

    Article  Google Scholar 

  27. Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A., Nassar, M.M.: Dynamic response of non-uniform beam subjected to moving load and resting on non-linear viscoelastic foundation. Beni-Suef Univ. J. Basic and Appl. Sci. 4(3), 192–199 (2015)

    Google Scholar 

  28. Ansari, M., Esmailzadeh, E., Younesian, D.: Frequency analysis of finite beams on nonlinear kelvin-voight foundation under moving loads. J. Sound Vib. 330(7), 1455–1471 (2011)

    Article  Google Scholar 

  29. Hong-Yan Chen, Hu., Ding, Shao-Hua Li., Chen, Li-Qun.: Convergent term of the galerkin truncation for dynamic response of sandwich beams on nonlinear foundations. J. Sound Vib. 483, 115514 (2020)

    Article  Google Scholar 

  30. Chen, H.-Y., Ding, H., Li, S.-H., Chen, L.-Q.: The scheme to determine the convergence term of the galerkin method for dynamic analysis of sandwich plates on nonlinear foundations. Acta Mechanica Solida Sinica, 34(1), (2020)

  31. Ouzizi, Anas, Abdoun, Farah, Azrar, Lahcen: Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed. J. Sound Vib. 523, 116730 (2022)

    Article  Google Scholar 

  32. Nguyen, Vu-Hieu, Duhamel, Denis: Finite element procedures for nonlinear structures in moving coordinates. part 1: Infinite bar under moving axial loads. Comput. Struct., 84,1368–1380, 08 (2006)

  33. Nguyen, V.-H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. part ii: Infinite beam under moving harmonic loads. Comput. Struct., 86, 11 (2008)

  34. Jorge, P., Simões, Fernando, Costa, António Pinto da: Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads. Computers & Structures, 148, 11 (2014)

  35. Chen, Jen-San., Chen, Yung-Kan.: Steady state and stability of a beam on a damped tensionless foundation under a moving load. Int. J. Non-Linear Mech. 46(1), 180–185 (2011)

    Article  Google Scholar 

  36. Sapountzakis, E.J., Kampitsis, A.E.: Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads. J. Sound Vib. 330(22), 5410–5426 (2011)

    Article  Google Scholar 

  37. Yang, Xinwen, Shu, Yao, Zhou, Shunhua: An explicit periodic nonlinear model for evaluating dynamic response of damaged slab track involving material nonlinearity of damage in high speed railway. Constr. Build. Mater. 168, 606–621 (2018)

    Article  Google Scholar 

  38. Samani, Farhad S., Pellicano, Francesco, Masoumi, Asma: Performances of dynamic vibration absorbers for beams subjected to moving loads. Nonlinear Dyn. 73(1), 1065–1079 (2013)

    Article  Google Scholar 

  39. Barry, O.R., Oguamanam, D.C.D., Zu, J.W.: Nonlinear vibration of an axially loaded beam carrying multiple mass-spring-damper systems. Nonlinear Dyn. 73(1), 1597–1608 (2014)

    Article  MathSciNet  Google Scholar 

  40. Bukhari, M.A., Barry, O.R.: Nonlinear vibrations analysis of overhead power lines: a beam with mass–spring–damper–mass systems. J. Vib. Acoustics, 140(3), 01 (2018). 031004

  41. Hoang, T., Duhamel, D., Foret, G., Yin, H.-P., Cumunel, G.: Response of a periodically supported beam on a nonlinear foundation subjected to moving loads. Nonlinear Dyn. 86(2), 953–961 (2016)

    Article  Google Scholar 

  42. Tran, L.-H., Nguyen D. D.: Calculation of the dynamic responses of rails subjected to moving loads on ballasted railway track. VNU J. Sci.: Math.- Phys., 38(3), (2022)

  43. Tran, L.-H., Do, T.-T.-H., Le-Nguyen, K.: Influence of beam models on dynamic responses of ballasted railway track subjected to moving loads. Arch. Appl. Mech. 06 (2023)

  44. Tran, L.-H., Le-Nguyen, K.: Calculation of dynamic responses of a cracked beam on visco-elastic foundation subjected to moving loads, and its application to a railway track model. Int. J. Appl. Mech. 15(03), 2350026 (2023)

    Article  Google Scholar 

  45. Hoang, T., Duhamel, D., Foret, G., Yin, H.P., Joyze, P., Caby, R.: Calculation of force distribution for a periodically supported beam subjected to moving loads. J. Sound Vib. 388, 327–338 (2017)

    Article  Google Scholar 

  46. Hoang, T., Duhamel, D., Foret, G.: Dynamical response of a timoshenko beams on periodical nonlinear supports subjected to moving forces. Eng. Struct. 176, 673–680 (2018)

    Article  Google Scholar 

  47. Ali, H.: Nayfeh. Introduction to perturbation techniques, Wiley Classics Library Edition (1972)

    Google Scholar 

  48. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley Classics Library Edition, (1972)

  49. Tran, L.-H., Le-Nguyen, K., Hoang, T.: A comparison of beam models for the dynamics of railway sleepers. Int. J. Rail Transp. 11(1), 92–110 (2023)

    Article  Google Scholar 

  50. Szemplińska-Stupnicka, W.: The generalized harmonic balance method for determining the combination resonance in the parametric dynamic systems. J. Sound Vib. 58(3), 347–361 (1978)

    Article  Google Scholar 

  51. Mickens, Ronald E.: A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators’’. J. Sound Vib. 287(4), 1045–1051 (2005)

    Article  MathSciNet  Google Scholar 

  52. Hoang, T., Duhamel, D., Foret, G., Yin, H.P., Argoul, P.: Frequency dependent iteration method for forced nonlinear oscillators. Appl. Math. Model. 42, 441–448 (2017)

    Article  MathSciNet  Google Scholar 

  53. Tran, L.-H.: Developpement des traverses instrumentées pour l’étude du comportement des voies ferrées. PhD thesis, ENPC, Paris-Est, (2020)

  54. Bracewell, R.N.: The Fourier transform and its applications. McGraw-Hill Higher Education, (2000)

Download references

Acknowledgements

Tran Le Hung, ID VNU.2021.TTS14, thanks The Development Foundation of Vietnam National University, Hanoi for sponsoring this research

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Hung Tran.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Mathematical transformation

By performing the Fourier transform, and then the inverse Fourier transform of the right term of Eq. (7), we can obtain the following result:

$$\begin{aligned} k_{rp}w_r(t) + \zeta _{rp} \dot{w}_r(t) = \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty k_p(\omega ) \hat{w}_r(\omega ) \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \nonumber \\ \end{aligned}$$
(20)

The right term of the last equation depends on the rail displacements. It can be rewritten as a function of the sleeper displacement by substituting Eq. (6) into Eq. (20) as follows:

$$\begin{aligned}{} & {} \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty k_p(\omega ) \hat{w}_r(\omega ) \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \\{} & {} \quad = \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \hat{u}_{R_{k_z}}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \\{} & {} \qquad - \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p(\omega ) \mathcal {Q}_e(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \end{aligned}$$

By combining the previous result and Eq. (7), we obtain the following result:

$$\begin{aligned} \begin{aligned}&\textbf{M} {\ddot{\textbf{u}}} + \textbf{C} {\dot{\textbf{u}}} +\textbf{K} \textbf{u} + \textbf{f}_{NL} (\textbf{u}, {\dot{\textbf{u}}}) \\&\quad = \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \hat{u}_{R_{1_z}}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_1} \\&\qquad - \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p(\omega ) \mathcal {Q}_1(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_1} \\&\qquad + \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \hat{u}_{R_{2_z}}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_2} \\&\qquad - \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p(\omega ) \mathcal {Q}_2(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_2} \end{aligned} \end{aligned}$$
(21)

where \(\mathcal {Q}_1(\omega )\) and \(\mathcal {Q}_2(\omega )\) are the equivalent train loads at the rail 1 and rail 2, respectively (see Appendix 1). \(\hat{u}_{R_{1_z}} (\omega )\) and \(\hat{u}_{R_{2_z}} (\omega )\) are, respectively, the two displacement of the sleeper at the crossing points with the two rails in the frequency domain. By developing the first and the third terms on the right side of Eq. (8), it can be rewritten as follows:

$$\begin{aligned} \left\{ \begin{aligned}&\left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \hat{u}_{R_{1_z}}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_1} \\&\quad = \textbf{I}_{R_1} \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \textbf{u}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \\&\left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \hat{u}_{R_{2_z}}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_1} \\&\quad = \textbf{I}_{R_2} \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \textbf{u}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \end{aligned} \right. \end{aligned}$$

Finally, by inserting the last result in Eq. (21), we have:

$$\begin{aligned} \begin{aligned}&\textbf{M} {\ddot{\textbf{u}}} + \textbf{C} {\dot{\textbf{u}}} +\textbf{K} \textbf{u} + \textbf{f}_{NL} (\textbf{u}, {\dot{\textbf{u}}}) \\&\quad = \textbf{I}_{R} \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p^2(\omega ) \textbf{u}(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \\&\qquad - \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p(\omega ) \mathcal {Q}_1(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_1} \\&\qquad - \left[ \dfrac{1}{2 \pi } \int \limits _{-\infty }^\infty \dfrac{k_p(\omega ) \mathcal {Q}_2(\omega )}{k_p(\omega )+ \mathcal {K}_e(\omega )} \textrm{e}^{\textrm{i} \omega t} \textrm{d}\omega \right] \textbf{e}_{R_2} \end{aligned} \end{aligned}$$
(22)

B Periodically supported beam in steady-state

Figure 12 presents a periodically supported beam model. In this model, each rail k of the track is modeled by an infinite beam posed on periodic supports. The sleeper spacing is l. The train loads are considered by the concentrated loads \(Q^{(k)}_j\). Each load is characterized by its distance \(D_j\) to the first axle and the train speed v.

Fig. 12
figure 12

Periodically supported beam model

In the frequency domain, Hoang et al. [45, 46] have demonstrated a relation between the reaction force \(\hat{R}_k(\omega )\) and the displacement of the rail \(\hat{w}_r(0, \omega )\) in the frequency domain as follows:

$$\begin{aligned} \hat{R}_k(\omega ) = \mathcal {K}_e(\omega ) \hat{w}_r(0, \omega ) + \mathcal {Q}_k(\omega ) \end{aligned}$$
(23)

where: \(\mathcal {K}_e(\omega )\) and \(\mathcal {Q}_k(\omega )\) are the equivalent stiffness and equivalent loads of the system. The two functions are calculated by the parameters of the rail and the train loads as follows:

$$\begin{aligned} \left\{ \begin{aligned}&\mathcal {K}_e(\omega ) = 4 \lambda _r^3 E_r I_r \left[ \dfrac{\sin l\lambda _r}{\cos l\lambda _r - \cos \frac{\omega l}{v}} \right. \\&\qquad \left. - \dfrac{\sinh l\lambda _r}{\cosh l\lambda _r - \cos \frac{\omega l}{v}}\right] ^{-1} \\&\mathcal {Q}_k(\omega ) = \dfrac{\mathcal {K}_e(\omega )}{v E_r I_r \left[ \left( \frac{\omega }{v}\right) ^4-\lambda _r^4\right] } \sum _{q=1}^K Q_q^{(k)} \textrm{e}^{- \textrm{i} \omega \frac{D_j}{v}} \end{aligned} \right. \end{aligned}$$
(24)

where: \(\lambda _r = \root 4 \of {\dfrac{\rho _r S_r \omega ^2}{E_r I_r}}\). \(E_r\), \(I_r\), \(\rho _r\) and \(S_r\) are, respectively, the Young’s modulus of rail, the second moment of area of the rail, the density of rail and cross-sectional area of rail. The expressions show that Eq. (23) is applicable for any foundation behavior. In this paper, the rail parameters are given in Table 2.

Table 2 Parameters of the periodically supported beam model [45]

C Calculation of equivalent load

By substituting Eq. (9) into Eq. (24) and together with the assumption as shown in Eq. (10), a new expression of the equivalent charge \(\mathcal {Q}_k(\omega )\) can be expressed as follows:

$$\begin{aligned}{} & {} \mathcal {Q}_k(\omega ) \nonumber \\{} & {} \quad = \dfrac{Q \mathcal {K}_e(\omega )}{v E_r I_r} \dfrac{\left( 1 + \textrm{e}^{-\textrm{i} \omega \frac{D_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{D_w + L_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{2D_w + L_w}{v}} \right) }{\left( \frac{\omega }{v}\right) ^4-\lambda _r^4}\nonumber \\{} & {} \quad \sum _{j=-\infty }^\infty \textrm{e}^{-\textrm{i} \omega \frac{H_w}{v}j} \end{aligned}$$
(25)

The parameters of Eq. (25) are explained in Appendix 1. Moreover, a property of the Dirac comb [54] gives the following result:

$$\begin{aligned} \sum _{j=-\infty }^\infty \textrm{e}^{-\textrm{i} \omega \frac{H_w}{v}j} = 2 \pi \dfrac{v}{H_w} \sum _{j=-\infty }^\infty \delta \left( \omega + \dfrac{2 \pi v}{H_w}j\right) \end{aligned}$$
(26)

By introducing this property into Eq. (25), the equivalent loads can be expressed as follows:

$$\begin{aligned}{} & {} \mathcal {Q}_k(\omega ) = \dfrac{2 \pi Q \mathcal {K}_e(\omega )}{E_r I_r H_w}\nonumber \\{} & {} \quad \dfrac{\left( 1 + \textrm{e}^{-\textrm{i} \omega \frac{D_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{D_w + L_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{2D_w + L_w}{v}} \right) }{\left( \frac{\omega }{v}\right) ^4-\lambda _r^4}\nonumber \\{} & {} \quad \sum _{j=-\infty }^\infty \delta \left( \omega + \dfrac{2 \pi v}{H_w}j\right) \end{aligned}$$
(27)

Thus, Eq. (27) leads to the following result:

$$\begin{aligned} \dfrac{1}{2\pi } \int \limits _{-\infty }^{+\infty }\dfrac{k_p(\omega ) \mathcal {Q}_k(\omega )}{k_p(\omega ) + \mathcal {K}_e(\omega )}\textrm{e}^{\textrm{i}\omega t} \textrm{d}\omega = \sum _{j=-\infty }^\infty F_j \textrm{e}^{\textrm{i}\omega _j t} \end{aligned}$$
(28)

where \(F_j\) is calculated by:

$$\begin{aligned}{} & {} F_j = \dfrac{Q }{E_r I_r H_w} \nonumber \\{} & {} \qquad \left[ \dfrac{1 + \textrm{e}^{-\textrm{i} \omega \frac{D_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{D_w + L_w}{v}} + \textrm{e}^{-\textrm{i} \omega \frac{2D_w + L_w}{v}}}{\left( \frac{\omega }{v}\right) ^4-\lambda _r^4}\right. \nonumber \\{} & {} \qquad \left. \dfrac{k_p(\omega ) \mathcal {K}_e(\omega )}{k_p(\omega ) + \mathcal {K}_e(\omega )} \right] _{\omega = \omega _j} \end{aligned}$$
(29)

The last equation describes a forced oscillation with the exciting force \(\sum F_j \textrm{e}^{\textrm{i} \omega _j t} \) with frequency \(f_0 = v/H_w\). We remark that \(\omega _j = 2 \pi f_j = 2 \pi j f_0\). We suppose that the solution of the nonlinear problem can admit the same frequencies as the excitation force. Therefore, with this assumption, there exists a periodic solution of \(\textbf{u}(t)\) which can be represented as follows:

$$\begin{aligned} \textbf{u}(t) = \sum _{j=-\infty }^\infty \Phi _j \textrm{e}^{\textrm{i} \omega _j t} \end{aligned}$$
(30)

Moreover, by performing the Fourier transform, Eq. (30) can be explained in the frequency domain as follows:

$$\begin{aligned} \hat{\textbf{u}}(\omega ) = 2 \pi \sum _{j=-\infty }^\infty \Phi _j \delta (\omega - \omega _j) \end{aligned}$$
(31)

So that, we can deduce the following result:

$$\begin{aligned} \dfrac{1}{2\pi } \int \limits _{-\infty }^{+\infty }\dfrac{k_p^2(\omega ) \hat{\textbf{u}}(\omega )}{k_p(\omega ) + \mathcal {K}_e(\omega )}\textrm{e}^{\textrm{i}\omega t} \textrm{d}\omega = \sum _{j=-\infty }^\infty \Phi _j P_j \textrm{e}^{\textrm{i}\omega t} \nonumber \\ \end{aligned}$$
(32)

where

$$\begin{aligned} P_j = \left[ \dfrac{k_p^2(\omega )}{k_p(\omega ) + \mathcal {K}_e(\omega )}\right] _{\omega =\omega _j} \end{aligned}$$
(33)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, LH., Hoang, T., Foret, G. et al. Calculation of dynamic responses of railway sleepers on a nonlinear foundation. Nonlinear Dyn 112, 443–458 (2024). https://doi.org/10.1007/s11071-023-09070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09070-w

Keywords

Navigation