Skip to main content
Log in

Distributed event-triggered fractional-order fault-tolerant control of multi-UAVs with full-state constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work presents an event-triggered mechanism-based distributed fractional-order fault-tolerant control (FTC) paradigm for multiple unmanned aerial vehicles (multi-UAVs) subject to full-state constraints. Distinct from the existing control solutions for multi-UAVs with constant constraints and symmetric constraints, the time-varying asymmetric constraints considered in this paper are more suitable for practical requirements. Neural networks are exploited to cope with uncertainties arising from unknown nonlinear dynamics. By cleverly combining speed functions with nonlinear state-dependent functions, a novel distributed FTC protocol is established to drive the system states into the boundary functions within a predetermined finite time. Simultaneously, fractional-order calculus is introduced to provide additional adjustment of control parameters, and an event-triggered mechanism is derived to reduce the update frequency of the control signal. It is testified that all signals of each follower UAV are semi-globally uniformly ultimately bounded, and all follower UAVs can follow the attitudes of the leader UAV. In the end, case studies are reported to corroborate the outperformance of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to the current manuscript because no datasets were generated or analyzed during the study period.

References

  1. Dong, X., Yu, B., Shi, Z., et al.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2014)

    Article  Google Scholar 

  2. Dong, X., Hua, Y., Zhou, Y., et al.: Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans. Autom. Sci. Eng. 16(1), 229–240 (2018)

    Article  Google Scholar 

  3. Wang, D., Zong, Q., Tian, B., et al.: Adaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leader. Nonlinear Dyn. 95, 1099–1116 (2019)

    Article  Google Scholar 

  4. Li, X., Qi, G., Zhang, L.: Time-varying formation dynamics modeling and constrained trajectory optimization of multi-quadrotor UAVs. Nonlinear Dyn. 106(4), 3265–3284 (2021)

    Article  Google Scholar 

  5. Ouyang, Y., Xue, L., Dong, L., et al.: Neural network-based finite-time distributed formation-containment control of two-layer quadrotor UAVs. IEEE Transa. Syst. Man Cybern. Syst. 52(8), 4836–4848 (2022)

    Article  Google Scholar 

  6. Shao, X., Yue, X., Liu, J.: Distributed adaptive formation control for underactuated quadrotors with guaranteed performances. Nonlinear Dyn. 105(4), 3167–3189 (2021)

    Article  Google Scholar 

  7. Kang, Y., Luo, D., Xin, B., et al.: Robust leaderless time-varying formation control for nonlinear unmanned aerial vehicle swarm system with communication delays. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3165007

    Article  Google Scholar 

  8. Yu, Y., Guo, J., Ahn, C.K., et al.: Neural adaptive distributed formation control of nonlinear multi-UAVs with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3157079

    Article  Google Scholar 

  9. Chen, G., Xiang, H.: Distributed fixed-time nonlinear control of microgrids based on event-triggered strategy. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08827-7

    Article  Google Scholar 

  10. Di, F., Li, A., Guo, Y., et al.: Disturbance observer-based finite-time coordinated control for spacecraft formation flying with event-triggered communication. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08587-4

    Article  Google Scholar 

  11. Chen, Z., Chen, K., Zhang, Y.: Distributed observer-based hierarchical optimal consensus tracking with dynamic event-triggered adaptive dynamic programming. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08496-6

    Article  Google Scholar 

  12. Wei, L., Chen, M., Li, T.: Disturbance-observer-based formation-containment control for UAVs via distributed adaptive event-triggered mechanisms. J. Frankl. Inst. 358(10), 5305–5333 (2021)

    Article  MathSciNet  Google Scholar 

  13. Wang, J., Bi, C., Wang, D., et al.: Finite-time distributed event-triggered formation control for quadrotor UAVs with experimentation. ISA Trans. 126, 585–596 (2022)

    Article  Google Scholar 

  14. Dou, L., Cai, S., Zhang, X., et al.: Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV. J. Frankl. Inst. 359(8), 3671–3691 (2022)

    Article  MathSciNet  Google Scholar 

  15. Liu, D., Liu, H., Xi, J.: Fully distributed adaptive fault-tolerant formation control for octorotors subject to multiple actuator faults. Aerosp. Sci. Technol. 108, 106366 (2021)

    Article  Google Scholar 

  16. Hao, W., Xian, B., Xie, T.: Fault-tolerant position tracking control design for a tilt tri-rotor unmanned aerial vehicle. IEEE Trans. Ind. Electron. 69(1), 604–612 (2022)

    Article  Google Scholar 

  17. Zhang, X., Tan, J., Wu, J., et al.: Event-triggered-based fixed-time adaptive neural fault-tolerant control for stochastic nonlinear systems under actuator and sensor faults. Nonlinear Dyn. 108(3), 2279–2296 (2022)

    Article  Google Scholar 

  18. Zhao, W., Liu, H., Wan, Y.: Data-driven fault-tolerant formation control for nonlinear quadrotors under multiple simultaneous actuator faults. Syst. Control Lett. 158, 105063 (2021)

    Article  MathSciNet  Google Scholar 

  19. Zou, Y., Xia, K., He, W.: Adaptive fault-tolerant distributed formation control of clustered vertical takeoff and landing UAVs. IEEE Trans. Aerosp. Electron. Syst. 58(2), 1069–1082 (2022)

    Article  Google Scholar 

  20. Zhang, B., Sun, X., Liu, S., et al.: Event-triggered adaptive fault-tolerant synchronization tracking control for multiple 6-DOF fixed-wing UAVs. IEEE Trans. Veh. Technol. 71(1), 148–161 (2022)

    Article  Google Scholar 

  21. Zhang, B., Sun, X., Lv, M., et al.: Distributed coordinated control for fixed-wing UAVs with dynamic event-triggered communication. IEEE Trans. Veh. Technol. 71(5), 4665–4676 (2022)

    Article  Google Scholar 

  22. Arya, S.R., Rao, S., Dattaguru, B.: Effect of asymmetric control constraints on fixed-wing UAV trajectories. IEEE Trans. Aerosp. Electron. Syst. 55(3), 1407–1419 (2019)

    Article  Google Scholar 

  23. Sun, R., Zhou, Z., Zhu, X.: Stability control of a fixed full-wing layout UAV under manipulation constraints. Aerosp. Sci. Technol. 120, 107263 (2022)

    Article  Google Scholar 

  24. Zhou, Y., Dong, W., Liu, Z., et al.: IBLF-based fixed-time fault-tolerant control for fixed-wing UAV with guaranteed time-varying state constraints. IEEE Trans. Veh. Technol. 72(4), 4252–4266 (2023)

    Article  Google Scholar 

  25. Zhao, K., Song, Y.: Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans. Autom. Control 64(3), 1265–1272 (2019)

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Hua, C., Wang, F., et al.: Distributed adaptive containment control of uncertain QUAV multiagents with time-varying payloads and multiple variable constraints. ISA Trans. 90, 107–115 (2019)

    Article  Google Scholar 

  27. Cao, L., Ren, H., Meng, W., et al.: Distributed event triggering control for six-rotor UAV systems with asymmetric time-varying output constraints. Sci. China Inf. Sci. 172213 (2021)

  28. Zhang, B., Sun, X., Lv, M., et al.: Distributed adaptive fixed-time fault-tolerant control for multiple 6-DOF UAVs with full-state constraints guarantee. IEEE Syst. J. 16(3), 4792–4803 (2022)

    Article  Google Scholar 

  29. Yu, Z., Zhang, Y., Jiang, B., et al.: Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs. IEEE Trans. Syst. Man Cybern. Syst. 52(2), 799–813 (2022)

    Article  Google Scholar 

  30. Labbadi, M., Boukal, Y., Cherkaoui, M., et al.: Fractional-order global sliding mode controller for an uncertain quadrotor UAVs subjected to external disturbances. J. Frankl. Inst. 358(9), 4822–4847 (2021)

    Article  MathSciNet  Google Scholar 

  31. Shao, S., Chen, M.: Robust discrete-time fractional-order control for an unmanned aerial vehicle based on disturbance observer. Int. J. Robust Nonlinear Control 32(8), 4665–4682 (2022)

    Article  MathSciNet  Google Scholar 

  32. Yu, Z., Zhang, Y., Jiang, B., et al.: Fault-tolerant time-varying elliptical formation control of multiple fixed-wing UAVs for cooperative forest fire monitoring. J. Intell. Robotic Syst. 101(3), 1–15 (2021)

    Google Scholar 

  33. Yu, Z., Zhang, Y., Liu, Z., et al.: Distributed adaptive fractional-order fault-tolerant cooperative control of networked unmanned aerial vehicles via fuzzy neural networks. IET Control Theory Appl. 13(17), 2917–2929 (2019)

  34. Yu, Z., Yang, Z., Sun, P., et al.: Refined fault tolerant tracking control of fixed-wing UAVs via fractional calculus and interval type-2 fuzzy neural network under event-triggered communication. Inf. Sci. 644, 119276 (2023)

    Article  Google Scholar 

  35. Liu, S., Jiang, B., Mao, Z., et al.: Distributed adaptive event-triggered fault-tolerant cooperative control of multiple UAVs and UGVs under DoS attacks. IET Control Theory Appl. (2023). https://doi.org/10.1049/cth2.12476

    Article  Google Scholar 

  36. Sonneveldt, L., Van Oort, E.R., Chu, Q.P., et al.: Nonlinear adaptive trajectory control applied to an F-16 model. J. Guid. Control. Dyn. 32(1), 25–39 (2009)

    Article  Google Scholar 

  37. Ni, J., Shi, P.: Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances. IEEE Trans. Cybern. 51(4), 1835–1848 (2021)

    Article  Google Scholar 

  38. Song, Y.D., Zhou, S.: Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints. Automatica 98, 314–322 (2018)

    Article  MathSciNet  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  40. Zhou, S., Song, Y., Luo, X.: Fault-tolerant tracking control with guaranteed performance for nonlinearly parameterized systems under uncertain initial conditions. J. Frankl. Inst. 357(11), 6805–6823 (2020)

    Article  MathSciNet  Google Scholar 

  41. Cao, Z., Niu, Y., Zou, Y.: Adaptive neural sliding mode control for singular semi-Markovian jump systems against actuator attacks. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1523–1533 (2021)

    Google Scholar 

  42. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78(3), 2129–2140 (2014)

    Article  MathSciNet  Google Scholar 

  43. Khalil, H.K.: Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans. Autom. Control 41(2), 177–188 (1996)

    Article  MathSciNet  Google Scholar 

  44. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  Google Scholar 

  45. Ge, S.S., Hang, C.C., Zhang, T.: Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(6), 818–828 (1999)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (61973164, 62373192), in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2020R1A2C2005709), and the authors gratefully acknowledge financial support from the China Scholarship Council under Grant (202106840077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PooGyeon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Cai, C. & Park, P. Distributed event-triggered fractional-order fault-tolerant control of multi-UAVs with full-state constraints. Nonlinear Dyn 112, 1069–1085 (2024). https://doi.org/10.1007/s11071-023-09069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09069-3

Keywords

Navigation