Skip to main content
Log in

The generalization of diagonally implicit Runge–Kutta–Nyström method with controllable numerical dissipation for structural dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper strictly focuses upon novel designs of the time-integration algorithms as applied to structural dynamics systems with or without physical damping. The significant advances and contributions are summarized as follows: (1) the identity between the composite time-integration algorithms and the diagonally implicit Runge–Kutta family of algorithms are specifically established and demonstrated in order to clarify the originality, development, contribution, and pros/cons of the composite time-integration algorithms developed over the recent decades; (2) then, it is pointed out that the design of potential next-generation multi-stage time-integration algorithms with improved numerical properties can directly emanate from and already exist within the diagonally implicit Runge–Kutta–Nyström (DIRKN) computational framework itself, unlike composite-type time-integration methods paying efforts and attempting to design new algorithmic structures, although they are identical to and pertain primarily to the existing RK-type variants; (3) one- and two-stage DIRKN family of new algorithms and novel designs are taken into consideration for the first time, leading to novel sets of parameters with different numerical properties, which not only encompass existing methods by assigning two identical principal roots, but also produce new and novel designs by employing altogether distinctive principal roots; and finally, (4) the much coveted BN-stability feature and condition are additionally achieved and taken into consideration in order to optimize the design of parameters, which is competitive for nonlinear structural dynamics. Numerical examples are demonstrated to validate the analysis, new designs and the proposed overall efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The datasets generated are available from the corresponding author on reasonable request after the publication.

References

  1. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODE’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    MathSciNet  Google Scholar 

  2. Bank, R.E., Coughran, W.M., Fichtner, W., Grosse, E.H., Rose, D.J., Smith, R.K.: Transient simulation of silicon devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 4(4), 436–451 (1985)

    Google Scholar 

  3. Bathe, K.J.: Finite Element Procedures. Klaus–Jurgen Bathe (2006)

  4. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85(7–8), 437–445 (2007)

    MathSciNet  Google Scholar 

  5. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83(31–32), 2513–2524 (2005)

    MathSciNet  Google Scholar 

  6. Borri, M., Bottasso, C.: A general framework for interpreting time finite element formulations. Comput. Mech. 13(3), 133–142 (1993)

    Google Scholar 

  7. Bukač, M., Fu, G., Seboldt, A., Trenchea, C.: Time-adaptive partitioned method for fluid-structure interaction problems with thick structures. J. Comput. Phys. 473, 111708 (2023)

    MathSciNet  Google Scholar 

  8. Bukač, M., Trenchea, C.: Adaptive, second-order, unconditionally stable partitioned method for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 393, 114847 (2022)

    MathSciNet  Google Scholar 

  9. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16(1), 46–57 (1979)

    MathSciNet  Google Scholar 

  10. Cannarozzi, M., Mancuso, M.: Formulation and analysis of variational methods for time integration of linear elastodynamics. Comput. Methods Appl. Mech. Eng. 127(1–4), 241–257 (1995)

    MathSciNet  Google Scholar 

  11. Chawla, M., Sharma, S.: Families of three-stage third order Runge–Kutta–Nyström methods for \(y^{\prime \prime }= f(x, y, y^{\prime })\). ANZIAM J. 26(3), 375–386 (1985)

    Google Scholar 

  12. Choi, B., Bathe, K.J., Noh, G.: Time splitting ratio in the \(\rho _{\infty }\)-Bathe time integration method for higher-order accuracy in structural dynamics and heat transfer. Comput. Struct. 270, 106814 (2022)

    Google Scholar 

  13. Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng. 37(23), 3961–3976 (1994)

    MathSciNet  Google Scholar 

  14. Crouzeix, M.: Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta. Ph.D. thesis, Université de Paris VI Thèse (1975)

  15. Crouzeix, M.: Sur les méthodes de runge kutta pour l’approximation des problemes d’évolution. In: Computing Methods in Applied Sciences and Engineering: Second International Symposium December 15–19, 1975, pp. 206–223. Springer, Berlin (1976)

  16. Fine, J.M.: Low order practical Runge–Kutta–Nyström methods. Computing 38(4), 281–297 (1987)

    MathSciNet  Google Scholar 

  17. Franco, J.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147(3), 770–787 (2002)

    Google Scholar 

  18. Geng, S.: Construction of high order symplectic Runge–Kutta methods. J. Comput. Math. 66, 250–260 (1993)

    MathSciNet  Google Scholar 

  19. Hairer, E.: Highest possible order of algebraically stable diagonally implicit Runge–Kutta methods. BIT Numer. Math. 20(2), 254–256 (1980)

    MathSciNet  Google Scholar 

  20. Hairer, E., Wanner, G., Nørsett, S.P.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    Google Scholar 

  21. Har, J., Tamma, K.: Advances in Computational Dynamics of Particles, Materials and Structures. Wiley, New York (2012)

    Google Scholar 

  22. Hulbert, G.M.: Time finite element methods for structural dynamics. Int. J. Numer. Methods Eng. 33(2), 307–331 (1992)

    MathSciNet  Google Scholar 

  23. Ji, Y., Xing, Y., Wiercigroch, M.: An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics. Nonlinear Dyn. 105(4), 3341–3358 (2021)

    Google Scholar 

  24. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge–Kutta methods for ordinary differential equations: a review. Tech. rep. (2016)

  25. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge–Kutta methods for stiff ODEs. Appl. Numer. Math. 146, 221–244 (2019)

    MathSciNet  Google Scholar 

  26. Kim, W.: An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Int. J. Numer. Methods Eng. 120(1), 1–28 (2019)

    MathSciNet  Google Scholar 

  27. Kim, W.: An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithm. Appl. Math. Model. 81, 910–930 (2020)

    MathSciNet  Google Scholar 

  28. Kim, W., Choi, S.Y.: An improved implicit time integration algorithm: the generalized composite time integration algorithm. Comput. Struct. 196, 341–354 (2018)

    Google Scholar 

  29. Kim, W., Lee, J.H.: An improved explicit time integration method for linear and nonlinear structural dynamics. Comput. Struct. 206, 42–53 (2018)

    Google Scholar 

  30. Kim, W., Reddy, J.: An improved time integration algorithm: a collocation time finite element approach. Int. J. Struct. Stab. Dyn. 17(02), 1750024 (2017)

    MathSciNet  Google Scholar 

  31. Kim, W., Reddy, J.: A critical assessment of two-stage composite time integration schemes with a unified set of time approximations. Latin Am. J. Solids Struct. 18, 66 (2021)

    Google Scholar 

  32. Li, J., Yu, K.: An alternative to the Bathe algorithm. Appl. Math. Model. 69, 255–272 (2019)

    MathSciNet  Google Scholar 

  33. Li, J., Yu, K.: Development of composite sub-step explicit dissipative algorithms with truly self-starting property. Nonlinear Dyn. 103(2), 1911–1936 (2021)

    MathSciNet  Google Scholar 

  34. Li, J., Zhao, R., Yu, K., Li, X.: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. Comput. Methods Appl. Mech. Eng. 389, 114274 (2022)

    MathSciNet  Google Scholar 

  35. Maxam, D.J., Tamma, K.K.: Load aliasing—a new additional test concept for effective control of nonhomogeneous high-frequency behavior in linear multistep methods. Int. J. Numer. Methods Eng. 123(12), 2705–2737 (2022)

    MathSciNet  Google Scholar 

  36. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: the \(\rho _{\infty }\)-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Google Scholar 

  37. Sanz-Serna, J., Abia, L.: Order conditions for canonical Runge–Kutta schemes. SIAM J. Numer. Anal. 28(4), 1081–1096 (1991)

    MathSciNet  Google Scholar 

  38. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, first. Universitext, 1st edn. Springer, Berlin (1985)

    Google Scholar 

  39. Wang, Y., Tamma, K.K., Maxam, D., Xue, T., Qin, G.: An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations. Arch. Comput. Methods Eng. 28, 3593–3619 (2021)

  40. Wang, Y., Xie, N., Yin, L., Lin, X., Zhang, T., Zhang, X., Mei, S., Xue, X., Tamma, K.: A truly self-starting composite isochronous integration analysis framework for first/second-order transient systems. Comput. Struct. 274, 106901 (2023)

    Google Scholar 

  41. Wang, Y., Xie, N., Yin, L., Zhang, T., Zhang, X., Mei, S., Xue, X., Tamma, K.: On the application of the GS4-1 framework for fluid dynamics and adaptive time-stepping via a universal A-posteriori error estimator. Int. J. Numer. Methods Heat Fluid Flow 32(10), 3306–3327 (2022)

    Google Scholar 

  42. Wang, Y., Xue, T., Tamma, K.K., Maxam, D., Qin, G.: An accurate and simple universal a posteriori error estimator for GS4-1 framework: adaptive time stepping in first-order transient systems. Comput. Methods Appl. Mech. Eng. 374, 113604 (2021)

    MathSciNet  Google Scholar 

  43. Wang, Y., Xue, X., Zhang, T., Dai, Q., Liu, Y., Xie, N., Mei, S., Zhang, X., Tamma, K.K.: Overview and novel insights into implicit/explicit composite time integration type methods—fall under the RK: no ifs, ands, or buts. Arch. Comput. Methods Eng. 30, 3891–3940 (2023)

    MathSciNet  Google Scholar 

  44. Wang, Y., Zhang, T., Zhang, X., Mei, S., Xie, N., Xue, X., Tamma, K.: On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms. Comput. Struct. 266, 106789 (2022)

    Google Scholar 

  45. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems. Springer, Berlin (1996)

    Google Scholar 

  46. Zhang, H., Xing, Y.: Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Comput. Struct. 221, 127–141 (2019)

    Google Scholar 

  47. Zhou, X., Tamma, K.K.: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamicsD. Int. J. Numer. Methods Eng. 59(5), 597–668 (2004)

    Google Scholar 

  48. Zhou, X., Tamma, K.K.: Algorithms by design with illustrations to solid and structural mechanics/dynamics. Int. J. Numer. Methods Eng. 66(11), 1738–1790 (2006)

    Google Scholar 

Download references

Funding

This work is supported by The Science and Technology Project of China Three Gorges Corporation (Grant No. 202103404) and the project of Power Construction Corporation of China (No. DJ-HXGG-2022-05).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YW, XX, HZ and KT. The first draft of the manuscript was written by Yazhou Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhubing Hu or Kumar Tamma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Mathematical formulation in the two-stage DIRKN method

The components of the amplification matrix in the proposed two-stage DIRKN method are written as Eq. (A.1), and the local error is written as Eq. (A.2).

$$\begin{aligned} {A_{11}} =&\frac{1}{D}\left[ \left( \overline{a}_{11}\overline{a}_{22} - \overline{a}_{11}\overline{b}_{2} + \overline{a}_{21}\overline{b}_{2} - \overline{a}_{22}\overline{b}_{1}\right) \varOmega ^4 \right. \nonumber \\&+ 2\xi \left( a_{11}\overline{a}_{22} + a_{22}\overline{a}_{11} - a_{11}\overline{b}_{2} + a_{21}\overline{b}_{2} - a_{22}\overline{b}_{1}\right) \varOmega ^3 \nonumber \\&+ \left( 4a_{11}a_{22}\xi ^2 + \overline{a}_{11} + \overline{a}_{22} - \overline{b}_{1} - \overline{b}_{2}\right) \varOmega ^2 \nonumber \\&\left. + 2\xi \left( a_{11} + a_{22}\right) \varOmega + 1 \right] \end{aligned}$$
(A.1a)
$$\begin{aligned} {A_{12}} =&\frac{1}{D}\left[ \left( \overline{a}_{11}\overline{a}_{22} - \overline{a}_{11}\overline{b}_{2}c_2 + \overline{a}_{21}\overline{b}_{2}c_1 - \overline{a}_{22}\overline{b}_1c_1\right) \varOmega ^4 \right. \nonumber \\&+ 2\xi \left( a_{11}\overline{a}_{22} + a_{22}\overline{a}_{11} - \overline{a}_{11}\overline{b}_{2} + \overline{a}_{21}\overline{b}_{2} \right. \nonumber \\&\left. - \overline{a}_{22}\overline{b}_1 - a_{11}\overline{b}_{2}c_2 + a_{21}\overline{b}_{2}c_1 - a_{22}\overline{b}_1c_1\right) \varOmega ^3 \nonumber \\&+ \left( 4\xi ^2(a_{11}a_{22} - a_{11}\overline{b}_{2} + a_{21}\overline{b}_{2} - a_{22}\overline{b}_1)\right. \nonumber \\&\left. +\overline{a}_{11} + \overline{a}_{22} - \overline{b}_1c_1 - \overline{b}_{2}c_2\right) \varOmega ^2 \nonumber \\&\left. + 2\xi \left( a_{11} + a_{22} - \overline{b}_1 - \overline{b}_{2}\right) \varOmega + 1 \right] \end{aligned}$$
(A.1b)
$$\begin{aligned} {A_{21}} =&\frac{1}{D}\left[ \left( \overline{a}_{21} b_{2} - \overline{a}_{11} b_{2} - \overline{a}_{22} b_1\right) \varOmega ^4 + 2\xi \left( a_{21} b_{2} \right. \right. \nonumber \\&\left. \left. - a_{11} b_{2} - a_{22} b_1\right) \varOmega ^3 - \left( b_1+b_{2}\right) \varOmega ^2 \right] \end{aligned}$$
(A.1c)
$$\begin{aligned} {A_{22}} =&\frac{1}{D}\left[ \left( \overline{a}_{11} \overline{a}_{22} - \overline{a}_{11} b_{2} c_2 + \overline{a}_{21} b_{2} c_1 - \overline{a}_{22} b_1 c_1\right) \varOmega ^4 \right. \nonumber \\&+ 2\xi \left( a_{11} \overline{a}_{22} + a_{22} \overline{a}_{11} - \overline{a}_{11} b_{2} + \overline{a}_{21} b_{2} - \overline{a}_{22} b_1 \right. \nonumber \\&\left. - a_{11} b_{2} c_2 + a_{21} b_{2} c_1- a_{22} b_1 c_1\right) \varOmega ^3 \nonumber \\&+ \left( 4\xi ^2(a_{11} a_{22} - a_{11} b_{2} + a_{21} b_{2} - a_{22} b_1)\right. \nonumber \\&\left. +\overline{a}_{11} + \overline{a}_{22} - b_1 c_1 -b_{2} c_2\right) \varOmega ^2 \nonumber \\&\left. + 2\xi \left( a_{11} + a_{22} - b_1 - b_{2}\right) \varOmega + 1 \right] \end{aligned}$$
(A.1d)

where \(D = \left( \overline{a}_{11}\varOmega ^2 + 2\xi a_{11}\varOmega + 1\right) \left( \overline{a}_{22}\varOmega ^2 + 2\xi a_{22}\varOmega \right. \left. + 1\right) \).

$$\begin{aligned} e_u =&\left( 2\overline{b}_1 + 2\overline{b}_2 - 1\right) \frac{2\xi \omega \dot{u}_n + \omega ^2 u_n - 1}{2\omega ^2}\varOmega ^2 \nonumber \\&+\left[ \left( 1-6a_{11}\overline{b}_1-6a_{21}\overline{b}_2-6a_{22}\overline{b}_2\right) \left( \frac{2\xi ^2\dot{u}_n}{3\omega }\right. \right. \nonumber \\&\left. +\frac{\xi (u_n \omega ^2-1)}{3\omega ^2}\right) \nonumber \\&\left. + \frac{\omega ^2\dot{u}_n-1}{6\omega ^3}\left( 6\overline{b}_1c_1 + 6\overline{b}_2 c_2 - 1\right) \right] \varOmega ^3 + \mathcal {O}(\varOmega ^4) \end{aligned}$$
(A.2a)
$$\begin{aligned} e_{\dot{u}} =&\left( b_1+b_2-1\right) \frac{2\xi \omega \dot{u}_n+\omega ^2 u_n-1}{\omega }\varOmega \nonumber \\&+ \left[ \left( 1-2a_{11}b_1-2a_{21}b_2-2a_{22}b_2\right) \left( 2\xi ^2\dot{u}_n\right. \right. \nonumber \\&\left. +\frac{\xi (u_n\omega ^2-1)}{\omega }\right) \nonumber \\&\left. + \frac{\omega ^2\dot{u}_n-1}{2\omega ^2}\left( 2b_1c_1 + 2b_2c_2 - 1\right) \right] \varOmega ^2 \nonumber \\&+ \left[ \left( 6b_1a_{11}^2 + 6a_{21}b_2a_{11} + 6b_2a_{22}^2 + 6a_{21}b_2a_{22} - 1\right) \right. \nonumber \\&\left( \frac{4\xi ^3\dot{u}_n}{3} + \frac{2\xi ^2(u_n\omega ^2-1)}{3\omega }\right) \nonumber \\&+ \left( 1-3\overline{a}_{11}b_1 - 3\overline{a}_{21}b_2-3\overline{a}_{22}b_2-3a_{11}b_1c_1\right. \nonumber \\&\left. -3a_{21}b_2c_1-3a_{22}b_2c_2\right) \frac{2\xi \dot{u}_n}{3}+ \nonumber \\&+\left( 6a_{11}b_1c_1+6a_{21}b_2c_1+6a_{22}b_2c_2-1\right) \frac{\xi }{3\omega ^2}\nonumber \\&+ \left( 6\overline{a}_{11}b_1 + 6\overline{a}_{21}b_2 + 6\overline{a}_{22}b_2 - 1\right) \frac{-\omega ^4 u_n + \omega ^2}{6\omega ^3} \nonumber \\&\left. + \left( 1 - 3b_1 c_1^2 - 3b_2c_2^2\right) \frac{1}{6\omega ^3} \right] \varOmega ^3 + \mathcal {O}(\varOmega ^4) \end{aligned}$$
(A.2b)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xue, X., Wang, T. et al. The generalization of diagonally implicit Runge–Kutta–Nyström method with controllable numerical dissipation for structural dynamics. Nonlinear Dyn 112, 525–559 (2024). https://doi.org/10.1007/s11071-023-09065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09065-7

Keywords

Navigation