Skip to main content
Log in

Equipartition of modal energy in an ideal string vibrating in the presence of a boundary obstacle

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the vibration characteristics of an ideal string in the presence of a curved boundary obstacle which is a common constructional feature of sitar, veena and tanpura. It has been well-established that these plucked string instruments have attractive tonal qualities like better harmonicity, presence of amplitude as well as frequency modulations, and appearance of a large number of overtones. The smooth wrapping and unwrapping of the string over the curved obstacle introduces quadratic nonlinearities whose effect on the vibration characteristics is elucidated through a perturbative analysis using the method of multiple scales. Modal interactions facilitated by the obstacle results in neutrally stable mode-locked periodic solutions in our model thereby accounting for the complex frequency and amplitude modulations. In particular, we find a mode-locked state which tends to an equipartition of energy with an increase in the number of modes. Our numerical simulations suggest that a plucked disturbance favors this state and hence, several overtones can be clearly identified in the sound of these plucked instruments. A good qualitative agreement between the results from our idealized model and the sound of these instruments highlights the role of the finite curved bridge in deciding the tonal quality of sitar, veena and tanpura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This paper has no associated data.

Notes

  1. We observe that sitar and veena also have frets using which a much larger variation in the frequencies can be achieved while the instrument is being played.

  2. We note that there are other fixed points (with at least one of the modal amplitudes as zero which implies that some modes do not participate in the interaction) which have not been reported here. We have verified that these fixed points are unstable (saddles) and hence, are never realized in practical experiments.

Abbreviations

\(\alpha \) :

Constant

\(\bar{\tau }\), \(\tau \) :

Nondimensional time

\(\bar{x}\) :

Nondimensional spatial coordinate

\(\bar{y}(\bar{x},\, \bar{\tau })\), \(y(x, \tau )\) :

Nondimensional transverse displacement of string

\(\Gamma \) :

Wrapped length of the string over the bridge along X

\(\gamma \) :

Nondimensional wrapped length of the string over the bridge

\(\gamma _n\) :

Wrapped length of the string over the bridge at \(\mathcal{O}(\epsilon ^n)\)

\(\gamma _{\textrm{st}}\) :

Static wrapped length of string over bridge

\(\phi _n\) :

Phase angles for nth mode of the string

\(\rho \) :

Density of the string (kg/m)

\(A_n\) and \(B_n\) :

Orthogonal components of amplitude of string for nth mode

\(A_P\) :

Constant

\(H_r\) :

Height of the right boundary of the string (\(X=L\))

\(R_n\) :

Amplitude of string for nth mode in polar coordinates

\(T_0\) :

Original time scale

\(T_1\) :

A slow time scale

x :

Scaled spatial coordinate \(x \in [0,1]\)

\(Y_B(X)\) :

Height of the bridge

\(y_n(x, T_0, T_1)\) :

Transverse displacement of string at \(\mathcal{O}(\epsilon ^n)\)

\(y_{\textrm{st}}(x)\) :

Static transverse displacement of string

B :

Length of the bridge

b :

Nondimensional length of the bridge

L :

Length of the string

MMS:

Method of multiple scales

ODE:

Ordinary differential equation

PDE:

Partial differential equation

T :

Tension in the string (N)

Y(Xt):

Transverse displacement of the string

References

  1. Deva, B.C.: Musical Instruments of India: Their History and Development, 2nd edn. Munshiram Manoharlal, New Delhi (1987)

    Google Scholar 

  2. Raman, C.V.: On some Indian stringed instruments. Proc. Ind. Assoc. Cultiv. Sci. 7, 29–33 (1921)

    Google Scholar 

  3. Mandal, A.K., Wahi, P.: Natural frequencies, mode shapes and modal interactions for strings vibrating against an obstacle: relevance to Sitar and Veena. J. Sound Vib. 338, 42–59 (2015)

    Article  Google Scholar 

  4. Valette, C., Cuesta, C., Castellengo, M., Besnainou, C.: The tampura bridge as a precursive Wave generator. Acoustica 74, 201–208 (1991)

    Google Scholar 

  5. Carterette, E.C., Jairazbhoy, N., Vaughn, K.: The role of tambura spectra in drone tunings of North Indian ragas. The 115th Meeting of Acoustial Society of America, Seattle, Washington (Abstract available at J. Acoust. Soc. Am., 83(S1), pp. S121–S121) (1988)

  6. Taguti, T., Tohnai, Y.: Acoustical analysis on the sawari tone of Chikuzen biwa. Acoust. Sci. Technol. 22(3), 199–208 (2001)

    Article  Google Scholar 

  7. Benade, A.H., Messenger, W.G.: Sitar spectrum properties. The 103rd Meeting of Acoustial Society of America, Chicago, Illinois (Abstract available at J. Acoust. Soc. Am., vol. 71(S1), pp. S83–S83) (1982)

  8. Le Conte, S., Vaiedelich, S., Bruguiere, P.: Acoustical measurement of Indian musical instruments (Vinas): Towards greater understanding for better conservation. Acoustics, Paris’08 (Abstract available at J. Acoust. Soc. Am., 123(5), 3380–3380) (2008)

  9. Bahn, C.R.: Extending and abstracting sitar acoustics in performance. Noise-Con 2010 Baltimore, Maryland (Abstract available at J. Acoust. Soc. Am., 127(3), 2011–2011) (2010)

  10. Weisser, S., Demoucron, M.: Shaping the resonance. Sympathetic strings in Hindustani classical instruments. Acoustics 2012, Hong Kong (Abstract available at J. Acoust. Soc. Am., 131(4), 3330–3330) (2012)

  11. Singh, P.G.: Perception and orchestration of melody, harmony and rhythm on instruments with ‘chikari’ strings. In: Proceedings of Meetings on Acoustics—ICA 2013 Montreal, Canada (Abstract available at J. Acoust. Soc. Am., 133(5), 3448–3448) (2013)

  12. Schatzman, M.: A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73, 138–191 (1980)

    Article  MathSciNet  Google Scholar 

  13. Burridge, R., Kappraff, J., Morshedi, C.: The sitar string, a vibrating string with a one sided inelastic constraint. SIAM J. Appl. Math. 42(6), 1231–1251 (1982)

    Article  MathSciNet  Google Scholar 

  14. Ahn, J.: A vibrating string with dynamic frictionless impact. Appl. Numer. Math. 57, 861–884 (2007)

    Article  MathSciNet  Google Scholar 

  15. Vyasarayani, C.P., Birkett, S., McPhee, J.: Modeling the dynamics of a vibrating string with finite distributed unilateral constraint: application to the sitar. J. Acoust. Soc. Am. 125(6), 3673–3682 (2009)

    Article  Google Scholar 

  16. Alsahlani, A., Mukherjee, R.: Vibration of a string wrapping and unwrapping around an obstacle. J. Sound Vib. 329, 2707–2715 (2010)

    Article  Google Scholar 

  17. Bilbao, S.: The changing picture of nonlinearity in musical Instruments. In: Proceedings of the International Symposium on Musical Acoustics—ISMA 2014, Le Mans, France (2014)

  18. Chatziioannou, V., van Walstijn, M.: Energy conserving schemes for the simulation of musical instrument contact dynamics. J. Sound Vib. 339, 262–279 (2015)

    Article  Google Scholar 

  19. Pisharody, R., Gupta, A.: Experimental investigations of tanpura acoustics. Acta Acust. United Acust. 104(3), 542–545 (2018)

    Article  Google Scholar 

  20. Paiva, G.O., Ablitzer, F., Gautier, F., dos Santos, J.M.C.: Collisions in double string plucked instruments: physical modelling and sound synthesis of the viola Caipira. J. Sound Vib. 443, 178–197 (2019)

    Article  Google Scholar 

  21. Chauhan, C., Singru, P.M., Vathsan, R.: Acoustic analysis of timbre of Sarasvati Veena in comparison to simple sonometer. In: Singh, M., Rafat, Y. (eds.) Recent Developments in Acoustics. Lecture Notes in Mechanical Engineering, pp. 275–284. Springer, Singapore (2021)

  22. Chauhan, C., Singru, P., Vathsan, R.: The effect of the extended bridge on the timbre of the Sarasvati Veena: a numerical and experimental study. J. Meas. Eng. 9, 23–35 (2021)

    Article  Google Scholar 

  23. Chauhan, C., Singru, P., Vathsan, R.: Numerical and experimental study of the effect of the bridge of Sarasvati Veena on its timbre. Acoust. Aust. 51, 53–66 (2023)

    Article  Google Scholar 

  24. Mandal, A.K., Wahi, P.: Coupled plate-string vibrations in the presence of a finite bridge: effect on natural frequencies and harmonicity. J. Acoust. Soc. Am. 146(5), 3362–3372 (2019)

    Article  Google Scholar 

  25. Mukherjee, S., Patra, S., Das, S.: Model-based study of coupled plate-string vibration related to stringed musical instruments. In: Maiti, D.K., et al. (eds.) Recent Advances in Computational and Experimental Mechanic Vol II. Lecture Notes in Mechanical Engineering, pp. 509–522. Springer, Singapore (2022)

  26. Nayfeh, S.A., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a taut string to longitudinal and transverse end excitation. J. Vib. Contin. 1(3), 307–334 (1995)

    Article  MathSciNet  Google Scholar 

  27. Luongo, A., Di Fabio, F.: Multimodal galloping of dense spectra structures. J. Wind Eng. Ind. Aerodyn. 48(2–3), 163–174 (1993)

  28. Kevorkian, J., Cole, J.D.: Multiple Scales and Singular Perturbation Methods. Springer, New York (1996)

    Book  Google Scholar 

  29. Sandilo, S.H., van Horssen, W.T.: On variable length induced vibrations of a vertical string. J. Sound Vib. 333, 2432–2449 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anindya Chatterjee, Anurag Gupta and Sovan Lal Das for useful discussions and comments, and the ministry of human resources and development (MHRD), India for financial support as research scholarship to Ashok Mandal. We also thank the anonymous reviewers for their constructive comments.

Funding

Part of the work was funded by ministry of human resources and development (MHRD), India through project MHRD/ME/2013360A.

Author information

Authors and Affiliations

Authors

Contributions

Both authors formulated the research plan together. Ashok Mandal executed the plan and worked out the detailed calculations and generated all the results. Both authors interpreted the results and contributed equally to the preparation of the final manuscript.

Corresponding author

Correspondence to Ashok K. Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Discretized set of ODEs from Galerkin projections

For the discretization of our governing PDE (7), we assume the transverse displacement as

$$\begin{aligned} \displaystyle y(x,\tau )= & {} \alpha \gamma (b-\gamma )(1-x) \nonumber \\{} & {} + \sum ^{N}_{n=1}{\beta _{n}(\tau )\sin (n \pi x)}. \end{aligned}$$
(38)

Note that this assumed displacement profile trivially satisfies the boundary conditions in (8). Enforcement of the slope continuity boundary condition (9) gives us the wrapped length \(\gamma \) in terms of the modal coordinates \(\beta _n'\)s as

$$\begin{aligned} \gamma = 1 - \sqrt{1-b+\frac{1}{\alpha }\sum ^{N}_{n=1}{n \pi \beta _n(\tau )}}. \end{aligned}$$
(39)

Substituting (38) and (39) in (7) and applying Galerkin projection, we get the discretized set of ordinary differential equations (ODEs) for the modal coordinates (see [3] for details) as

$$\begin{aligned}{} & {} \sum ^{N}_{n=1}\left[ K_{2nm}\left[ 1-b+\frac{1}{\alpha }\sum ^{N}_{p=1}{p\pi \beta _p}\right] \right. \nonumber \\{} & {} \quad \left. +\frac{n \pi }{2\alpha } \sum ^{N}_{p=1}{p\pi \beta _p \left( K_{4pm} - K_{3m}\right) }\right] \ddot{\beta }_n \nonumber \\{} & {} \quad - \frac{\left[ \sum \limits ^{N}_{p=1}{p\pi \dot{\beta }_p}\right] ^2}{4\alpha ^2 \left[ 1-b+\frac{1}{\alpha }\sum \limits ^{N}_{p=1}{p\pi \beta _p}\right] }\nonumber \\{} & {} \quad \left[ \sum ^{N}_{n=1}{n \pi \left[ 3 K_{4nm} + n \pi K_{1nm} - K_{3m}\right] \beta _n}\right. \nonumber \\{} & {} \quad +\left. 2 \alpha \left( 1-b\right) K_{3m}\right] \nonumber \\{} & {} \quad + \frac{1}{\alpha }\sum ^{N}_{p=1}{p \pi \dot{\beta }_p}\sum ^{N}_{n=1}{n \pi \dot{\beta }_n K_{4nm}} \nonumber \\{} & {} \quad + \sum ^{N}_{n=1}{n^2 \pi ^2 \beta _n K_{2nm}}=0, \end{aligned}$$
(40)

for \(m=1,\, 2,...N\) and the \(K'\)s are defined as

$$\begin{aligned}{} & {} K_{1nm}=\int _0^1{(1-x)^2\sin (n\pi x)\sin (m\pi x) dx}\\{} & {} \quad = \left\{ \begin{array}{l l} \displaystyle \left( \frac{1}{6}-\frac{1}{4n^2\pi ^2}\right) \hspace{3mm}\text {if}\hspace{2mm} n=m,\\ \displaystyle \frac{4nm}{(n^2-m^2)^2\pi ^2} \hspace{5mm}\text {if} \hspace{2mm} n \ne m, \end{array}\right. \\ K_{2nm}= & {} \int _0^1{\sin (n\pi x)\sin (m\pi x) dx}= \frac{1}{2}\delta _{nm}, \\ K_{3m}= & {} \int _0^1{(1-x) \sin (m \pi x)dx}=\frac{1}{m \pi }, \\ K_{4nm}= & {} \int ^1_0{(1-x)\cos (n\pi x)\sin (m\pi x)dx}\\= & {} \left\{ \begin{array}{l l} \displaystyle \frac{1}{4n\pi } \hspace{12mm}\text {if}\hspace{2mm} n=m. \\ \displaystyle \frac{m }{(m^2-n^2)\pi } \hspace{5mm}\text {if}\hspace{2mm} n\ne m. \end{array}\right. \end{aligned}$$

These discretized ODEs are used to numerically study the various properties of the solution so as to verify the findings of the perturbative approach presented in this paper.

Table 7 Initial conditions for a ten mode approximation (\(N=10\)) corresponding to plucking at \(x=x_2\)

Appendix B: PDE at \(\mathcal{O}(\epsilon ^2)\) resulting from (7)

$$\begin{aligned}{} & {} \frac{\partial ^2 y_2(x, T_0, T_1)}{\partial T_0^2}- \frac{1}{(1-\gamma _{st})^2}\frac{\partial ^2 y_2(x, T_0, T_1)}{\partial x^2} \nonumber \\{} & {} -\frac{2\gamma _1(T_0, T_1)}{(1-\gamma _{st})^3}\frac{\partial ^2 y_1(x, T_0, T_1)}{\partial x^2} \nonumber \\{} & {} \quad - \frac{(1-x)}{(1-\gamma _{st})}\frac{\partial ^2 \gamma _1(T_0, T_1)}{\partial T^2_0}\frac{\partial y_1(x, T_0, T_1)}{\partial x}\nonumber \\{} & {} \quad - \frac{2(1-x)}{(1-\gamma _{st})}\frac{\partial \gamma _1(T_0, T_1)}{\partial T_0}\frac{\partial ^2 y_1(x, T_0, T_1)}{\partial T_0\partial x} \nonumber \\{} & {} \quad + 2\frac{\partial ^2 y_1(x, T_0, T_1)}{\partial T_0\partial T_1}\nonumber \\{} & {} \quad - \frac{2(1-x)}{(1-\gamma _{st})^2}\frac{\partial y_{st}(x)}{\partial x}\left( \frac{\partial \gamma _1(T_0, T_1)}{\partial T_0}\right) ^2 \nonumber \\{} & {} \quad + \frac{(1-x)^2}{(1-\gamma _{st})^2}\frac{\partial ^2 y_{st}(x)}{\partial x^2}\left( \frac{\partial \gamma _1(T_0, T_1)}{\partial T_0}\right) ^2\nonumber \\{} & {} \quad -\frac{(1-x)\gamma _1(T_0, T_1)}{(1-\gamma _{st})^2}\frac{\partial y_{st}(x)}{\partial x}\frac{\partial ^2 \gamma _1(T_0, T_1)}{\partial T^2_0} \nonumber \\{} & {} \quad -\frac{2(1-x)}{(1-\gamma _{st})}\frac{\partial y_{st}(x)}{\partial x}\frac{\partial ^2 \gamma _1(T_0, T_1)}{\partial T_0 \partial T_1}\nonumber \\{} & {} \quad -\frac{(1-x)}{(1-\gamma _{st})}\frac{\partial y_{st}(x)}{\partial x}\frac{\partial ^2 \gamma _2(T_0, T_1)}{\partial T^2_0} \nonumber \\{} & {} \quad - \frac{\left( 3\gamma ^2_1(T_0,T_1) -2\gamma _{st}\gamma _2(T_0, T_1) +2\gamma _2(T_0, T_1)\right) }{(1-\gamma _{st})^4}\nonumber \\{} & {} \quad \times \frac{\partial ^2 y_{st}(x)}{\partial x^2}=0. \end{aligned}$$
(41)

Appendix C: Initial conditions corresponding to plucking at an arbitrary location along the string

An appropriate initial condition for the various modes of the string when plucked at a point corresponds to a triangular shape for the displaced string with the maximum displacement at the point of plucking. For the discretization of our system of equation in “Appendix A”, we have assumed the transverse displacement as given in (38). Multiplying (38) by \(\sin (m \pi x)\) and integrating over the domain \(x \in [0, 1]\) and using the orthogonality properties of the sine series, we get the modal coordinates in terms of the displaced profile \(y(x,\tau )\) as

$$\begin{aligned}{} & {} \beta _m(\tau )=2\int _0^1{y(x,\tau )\sin (m\pi x) dx} \nonumber \\{} & {} \quad - \frac{2\alpha \gamma (b-\gamma )}{m \pi }. \end{aligned}$$
(42)

The initial shape for a string plucked at \(x=x_2\) can be described through two line segments as

$$\begin{aligned}{} & {} y(x,0)=\alpha \gamma (b-\gamma ) - \frac{x}{x_2}[\alpha \gamma (b-\gamma ) - 1 + s], \nonumber \\{} & {} \quad \hspace{3mm} 0\le x \le x_2, \end{aligned}$$
(43)
$$\begin{aligned}{} & {} y(x,0) = 1-s +(1-s)\frac{x-x_2}{x_2-1}, \hspace{3mm} x_2\le x \le 1,\nonumber \\ \end{aligned}$$
(44)

where s is the downward displacement of the point \(x=x_2\) measured from the horizontal line \(y=1\) which is the nondimensional height of the bridge. Now the straight line (43) must have the same slope as the slope of the bridge at \(x=0\). Substituting (43) into (9) and simplifying we get

$$\begin{aligned}{} & {} \alpha (2x_2-1)\gamma ^2 - \alpha (b x_2 + 2 x_2 -b) \gamma \nonumber \\{} & {} \quad + \alpha x_2 b -1 +s=0. \end{aligned}$$
(45)

Solving (45) we obtain the wrapped length of the string for the plucked profile as

$$\begin{aligned} \gamma \!=\!\frac{2 x_2 + b x_2 - b - \sqrt{(2 x_2 + b x_2 -b)^2 - \frac{4}{\alpha }(2 x_2 -1)(\alpha b x_2 - 1 +s)}}{2 (2 x_2 -1)}.\nonumber \\ \end{aligned}$$
(46)

Now substituting (43), (44) and (46) into (42) we can get the modal coordinates for any possible plucked (triangular) shape of the string. In Table 7 we have listed the initial modal coordinates (for \(N=10\)) for different plucking positions \(x=x_2\) and \(s=x_2+0.1\) which means the string is plucked approximately 0.1 nondimensional length units downward from the static configuration of the string. We note that the slope of the line corresponding to the static configuration of the string is \(\alpha (b-2\gamma _{st}) (1-\gamma _{st})\) with \(\gamma _{st}=1-\sqrt{1-b}\) which is approximately \(-1\) but slightly lower than 1 in magnitude.

Appendix D: Slow flow equations for 3 modes in terms of amplitudes and relative phases

The slow flow equations obtained for the amplitudes and relative phases of a string with 3 modes (\(N=3\)) are

$$\begin{aligned}{} & {} \frac{\partial R_1}{\partial T_1} = \frac{\pi ^2}{2 \alpha (1-b)^{3/2}} \nonumber \\{} & {} \quad \left[ 3 R_2R_3\cos (\theta _2-\theta _1) + R_1 R_2 \cos \theta _1\right] , \end{aligned}$$
(47)
$$\begin{aligned}{} & {} \frac{\partial R_2}{\partial T_1} = \frac{\pi ^2}{8 \alpha (1-b)^{3/2}} \nonumber \\{} & {} \quad \left[ 6 R_1 R_3 \cos (\theta _2-\theta _1) - R^2_1\cos \theta _1\right] , \end{aligned}$$
(48)
$$\begin{aligned}{} & {} \frac{\partial R_3}{\partial T_1} = -\frac{\pi ^2}{2 \alpha (1-b)^{3/2}} \nonumber \\{} & {} \quad R_1 R_2\cos (\theta _2-\theta _1), \end{aligned}$$
(49)
$$\begin{aligned}{} & {} \frac{\partial \theta _1}{\partial T_1} = - \frac{\pi ^2}{ \alpha R_1 (1-b)^{3/2}}\nonumber \\{} & {} \quad \left[ 3 R_2 R_3 \sin (\theta _2-\theta _1) + R_1 R_2 \sin \theta _1\right] \nonumber \\{} & {} \quad + \frac{\pi ^2}{8 \alpha R_2 (1-b)^{3/2}}\nonumber \\{} & {} \quad \left[ 6 R_1 R_3 \sin (\theta _2-\theta _1) + R^2_1\sin \theta _1\right] , \end{aligned}$$
(50)
$$\begin{aligned}{} & {} \frac{\partial \theta _2}{\partial T_1}=- \frac{3 \pi ^2}{2 \alpha R_1 (1-b)^{3/2}}\nonumber \\{} & {} \left[ 3 R_2 R_3 \sin (\theta _2-\theta _1) + R_1 R_2 \sin \theta _1\right] \nonumber \\{} & {} +\frac{\pi ^2}{2 \alpha R_3 (1-b)^{3/2}}R_1 R_2 \sin (\theta _2-\theta _1). \end{aligned}$$
(51)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K., Wahi, P. Equipartition of modal energy in an ideal string vibrating in the presence of a boundary obstacle. Nonlinear Dyn 112, 215–232 (2024). https://doi.org/10.1007/s11071-023-09046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09046-w

Keywords

Navigation