Skip to main content
Log in

Application of Bell polynomial in the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, Bell polynomial method is used to study the (2+1)-dimensional NNV equation integrability and solve the problem. Firstly, a bilinear form of the equation is constructed using Bell polynomial. Secondly, using the bilinear form and the symbolic computing system Mathematica, the bilinear Bell polynomial B\(\ddot{a}\)cklund transformation and Lax pair of the equation are acquired. Finally, the conservation laws and the Weierstrass elliptic function solutions of the equation are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this paper are included in this published article.

References

  1. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  Google Scholar 

  2. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  3. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  4. Zhang, R.F., Bilige, S.D., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2020)

    Article  Google Scholar 

  5. Zhang, R.F., Bilige, S.D., Temuer, C.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    Article  MathSciNet  Google Scholar 

  6. Luo, T.Q., Huang, X.: Application of Bell polynomials to (2+1)-dimensional Nizhnik equations. Sichuan Normal Univ. (Natural Science Edition) 38(6), 861–866 (2015)

    Google Scholar 

  7. Ruan, H.Y., Chen, Y.X.: Exploration of soliton interactions in (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Acta Phys. Sinica 52(6), 1313–1318 (2003)

    Article  MathSciNet  Google Scholar 

  8. Fu, H.M., Dai, Z.D.: A new solution of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation. Shihezi Univ. (Natural Science Edition) 27(3), 376–378 (2009)

    Google Scholar 

  9. Fu, H.M., Dai, Z.D.: New exact solutions of (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Shandong Normal Univ. (Natural Science Edition) 24(3), 6–8 (2009)

    Google Scholar 

  10. Bao, T.: Yilina, Some new types of (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equations and their interactions. Inner Mongolia Univ. (Natural Science Edition) 51(6), 561–568 (2020)

    MathSciNet  Google Scholar 

  11. Zou, K.F., Li, X.C.: New traveling wave solutions for generalized Nizhnik-Novikov-Veselov equations. Xuchang Univ. 31(2), 6–13 (2012)

    Google Scholar 

  12. Fan, L.L., Bao, T.: Superposition solutions to a (3+1)-dimensional variable-coefffficient Sharma-Tasso-Olver-Like equation. Phys. Scr. 97, 065204 (2022)

    Article  Google Scholar 

  13. Rizvi, S.T.R., Seadawy, Aly R., Ashraf, F., Younis, M., Iqbal, H., Baleanu, D.: Lump and Interaction solutions of a geophysical Korteweg-de Vries equation. Res. Phys. 19, 103661 (2020)

    Google Scholar 

  14. Xu, X.G., Meng, X.H., Qu, Q.X.: Lump soliton solutions and Backlund transformation for the (3+1)-dimensional Boussinesq equation with Bell polynomials. Int. J. Mod. Phys. B 32(21), 1850244 (2018)

    Google Scholar 

  15. Li, H., Gao, Y.T., Liu, L.C.: Bell-polynomial approach and soliton solutions for some higher-order Korteweg-de vries equations in fluid mechanics, plasma physics and lattice dynamics. Commun. Theor. Phys. 64, 630–636 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y.F., Tian, B., Wang, P., Li, M., Jiang, Y.: Bell-polynomial approach and soliton solutions for the zhiber-shabat equation and (2+1)-dimensional gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Wang, Y.H., Chen, Y.: Binary bell polynomials, bilinear approach to exact periodic wave solutions of (2+1)-dimensional nonlinear evolution equations. Commun. Theor. Phys. 56(4), 672–678 (2011)

    Article  MathSciNet  Google Scholar 

  19. Liu, N.: B?cklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82, 311–318 (2015)

    Article  Google Scholar 

  20. Wang, Y.H., Wang, H., Temuer, C.: Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 78, 1101–1107 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhang, S.J., Bao, T.: Infinite conservation laws and new solutions of (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Int. J. Mod. Phys. B 36(16), 2250082 (2022)

    Article  Google Scholar 

  22. Zhao, N., Manafian, J., Ilhan, O.A., Singh, G., Zulfugarovak, R.: Abundant interaction between lump and k-kink, periodic and other analytical solutions for the (3+1)-D Burger system by bilinear analysis. Int. J. Mod. Phys. B 35(13), 2150173 (2021)

    Article  MathSciNet  Google Scholar 

  23. ShenG, P., Manafian, J., Huy, D.T.N., Nisar, K.S., Abotaleb, M., Trung, N.D.: Abundant soliton wave solutions and the linear superposition principle for generalized (3+1)-D nonlinear wave equation in liquid with gas bubbles by bilinear analysis. Res. Phys. 32, 105066 (2022)

    Google Scholar 

  24. Manafian, J., Lakestani, M.: N-Lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation. J. Geom. Phys. 150, 103598 (2020)

    Article  MathSciNet  Google Scholar 

  25. Sun, Y.L., Ma, W.X., Yu, J.P.: N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation. Appl. Math. Lett. 120, 107224 (2021)

    Article  MathSciNet  Google Scholar 

  26. Zayed, E.M.E., Alnowehy, A.G.: The multiple exp-function method and the linear superposition principle for solving the (2+1)-dimensional calogero-bogoyavlenskii-schiff equation. Z. Naturf. 70(9), 775–779 (2015)

    Article  Google Scholar 

  27. Ma, W.X.: N-soliton solutions and the Hirota conditions in (1+1)-dimensions. Int. J. Non. Sci. Numer. Simul. 23(1), 123–133 (2022)

    Article  MathSciNet  Google Scholar 

  28. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217–22 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lü, X., et al.: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Backlund transformation, Lax pair and infifinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

    Article  Google Scholar 

  30. Chen, Y., Lü, X., Wang, X.L.: Backlund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation Eur. Phys. J. Plus 138492 (2023)

  31. Kumar, S., Mohan, B.: A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas. Nonlinear Dyn. 111, 16395–16405 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the anonymous reviewers for their helpful and constructive suggestions, which can help improve this paper further. This work is supported by the National Natural Science Foundation of China (Grant No.11361040), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No.2020LH01008), and the Graduate Students Scientific Research Innovation Fund Program of Inner Mongolia Normal University, China (Grant No.CXJJS20089).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taogetusang Bao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the research effort and the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Bao, T. Application of Bell polynomial in the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equation. Nonlinear Dyn 111, 22513–22521 (2023). https://doi.org/10.1007/s11071-023-09024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09024-2

Keywords

Navigation