Skip to main content
Log in

Localized waves of the higher-order nonlinear Schrödinger-Maxwell-Bloch system with the sextic terms in an erbium-doped fiber

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we concentrate on the higher-order nonlinear Schrödinger-Maxwell-Bloch system with the sextic terms, which could characterize the ultra-short optical pulses in an erbium-doped fiber. Proceeding from the existing Lax pair and one-fold Darboux transformation (DT), we build an N-fold generalized DT with one spectral parameter by means of the limit procedure, and on this basis determine the Nth-order solutions of that system. The second- and third-order degenerate solitons are shown through the second-order and third-order solutions, respectively, and we also present the second-order degenerate breather through the second-order solutions. We obtain the eye-shaped rogue wave involving one hump and two valleys, rogue wave involving four valleys, as well as four-petaled rogue wave involving two humps and two valleys via the first-order solutions. Using the second-order solutions, we obtain the interaction between the two first-order rogue waves and show that the second-order rogue wave divides into three first-order rogue waves which are arranged in the triangle structure. Modifying that generalized DT, we work out the second-order and third-order mixed wave solutions, and then show the interactions between the first-order/second-order rogue wave and first-order breather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This paper has no associated data.

Notes

  1. An “ultra-short pulse” refers to a pulse with the duration of 100 fs or less [3].

  2. Many physical systems exhibit behaviour related with the occurrence of high-amplitude events with low likelihood but significant influence [30].

References

  1. Salmela, L., Tsipinakis, N., Foi, A., Billet, C., Dudley, J.M., Genty, G.: Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat. Mach. Intell. 3, 344–354 (2021)

    Google Scholar 

  2. Fronk, M.D., Fang, L., Packo, P., Leamy, M.J.: Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dyn. 111, 10709–10741 (2023)

    Google Scholar 

  3. Gamaly, E.G.: The physics of ultra-short laser interaction with solids at non-relativistic intensities. Phys. Rep. 508, 91–243 (2011)

    Google Scholar 

  4. Rowley, M., Hanzard, P.H., Cutrona, A., Bao, H., Chu, S.T., Little, B.E., Morandotti, R., Moss, D.J., Oppo, G.L., Gongora, J.S.T., Peccianti, M., Pasquazi, A.: Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022)

    Google Scholar 

  5. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: \(N\)-fold generalized Darboux transformation and asymptotic analysis of the degenerate solitons for the Sasa-Satsuma equation in fluid dynamics and nonlinear optics. Nonlinear Dyn. 111, 16339–16352 (2023)

  6. Liu, F.F., Lü, X., Wang, J.P., Wu, Y.C.: Dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers. Nonlinear Dyn. 111, 10441–10458 (2023)

    Google Scholar 

  7. Zhou T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

  8. Suret, P., Tikan, A., Bonnefoy, F., Copie, F., Ducrozet, G., Gelash, A., Prabhudesai, G., Michel, G., Cazaubiel, A., Falcon, E., El, G., Randoux, S.: Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves. Phys. Rev. Lett. 125, 264101 (2020)

    Google Scholar 

  9. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  10. Salah, M., Ragb, O., Wazwaz, A.M.: Efficient discrete singular convolution differential quadrature algorithm for solitary wave solutions for higher dimensions in shallow water waves. Wave Random Complex (2023). https://doi.org/10.1080/17455030.2022.2136420

    Article  Google Scholar 

  11. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system. Phys. Fluids (2023). https://doi.org/10.1063/5.0170506

  12. Gao, X.Y., Guo, Y.J., Shan, W.R.: Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers model for a dilated artery, blood vessel or circulatory system with experimental support. Commun. Theor. Phys. 75, 115006 (2023)

  13. Feng, C.H., B. Tian, Yang, D.Y., Gao, X.T.: Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface. Chin. J. Phys. 83, 515–526 (2023)

  14. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

  15. Zabolotnykh, A.A.: Plasma solitons in gated two-dimensional electron systems: exactly solvable analytical model for the regime beyond weak nonlinearity. Phys. Rev. B 105, L201403 (2022)

    Google Scholar 

  16. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022)

    Google Scholar 

  17. Farolfi, A., Trypogeorgos, D., Mordini, C., Lamporesi, G., Ferrari, G.: Observation of magnetic solitons in two-component Bose-Einstein condensates. Phys. Rev. Lett. 125, 030401 (2020)

    Google Scholar 

  18. Poy, G., Hess, A.J., Seracuse, A.J., Paul, M., Žumer, S., Smalyukh, I.I.: Interaction and co-assembly of optical and topological solitons. Nat. Photon. 16, 454–461 (2022)

    Google Scholar 

  19. Hasegawa, A.: An historical review of application of optical solitons for high speed communications. Chaos 10, 475–485 (2000)

    MathSciNet  Google Scholar 

  20. Meng, B., Singleton, M., Hillbrand, J., Franckié, M., Beck, M., Faist, J.: Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142–147 (2022)

    Google Scholar 

  21. Tam, K.K.K., Alexander, T.J., Blanco-Redondo, A., de Sterke, C.M.: Generalized dispersion Kerr solitons. Phys. Rev. A 101, 043822 (2020)

    MathSciNet  Google Scholar 

  22. Hasegawa, A.: Optical soliton: a memoir of its discovery and future prospects. Opt. Commun. 532, 129222 (2023)

    Google Scholar 

  23. Wazwaz, A.M., Hammad, M.A., El-Tantawy, S.A.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  24. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  25. Rozenman, G.G., Schleich, W.P., Shemer, L., Arie, A.: Periodic wave trains in nonlinear media: Talbot revivals, Akhmediev breathers, and asymmetry breaking. Phys. Rev. Lett. 128, 214101 (2022)

    Google Scholar 

  26. He, Y., Slunyaev, A., Mori, N., Chabchoub, A.: Experimental evidence of nonlinear focusing in standing water waves. Phys. Rev. Lett. 129, 144502 (2022)

    Google Scholar 

  27. Che, W.J., Chen, S.C., Liu, C., Zhao, L.C., Akhmediev, N.: Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra. Phys. Rev. E 105, 043526 (2022)

    MathSciNet  Google Scholar 

  28. Gelash, A., Raskovalov, A.: Vector breathers in the Manakov system. Stud. Appl. Math. 150, 841–882 (2023)

    MathSciNet  Google Scholar 

  29. Koussaifi, R.E., Tikan, A., Toffoli, A., Randoux, S., Suret, P., Onorato, M.: Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics. Phys. Rev. E 97, 012208 (2018)

    Google Scholar 

  30. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014)

    Google Scholar 

  31. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1, 675–689 (2019)

    Google Scholar 

  32. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    MathSciNet  Google Scholar 

  33. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641–5653 (2023)

    Google Scholar 

  34. Wu, X.H., Gao, Y.T., Yu, X., Liu, F.Y.: Generalized Darboux transformation and solitons for a Kraenkel–Manna–Merle system in a ferromagnetic saturator. Nonliner Dyn. 111, 14421–14433 (2023)

    Google Scholar 

  35. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  36. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. (2023). https://doi.org/10.1016/j.cnsns.2023.107205

    Article  Google Scholar 

  37. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model. Commun. Theor. Phys. 75, 055005 (2023)

    MathSciNet  Google Scholar 

  38. Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics. Nonlinear Dyn. 111, 6659–6675 (2023)

    Google Scholar 

  39. Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y.: Report on an extended three-coupled Korteweg-de Vries system. Ricerche Mat. (2023). https://doi.org/10.1007/s11587-023-00769-x

    Article  Google Scholar 

  40. Cheng, C.D., Tian, B., Zhou, T.Y., Shen, Y.: Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma. Phys. Fluids 35, 037101 (2023)

    Google Scholar 

  41. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Google Scholar 

  42. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Bilinear form, bilinear auto-Bäcklund transformation, soliton and half-periodic kink solutions on the non-zero background of a (3+1)-dimensional time-dependent-coefficient Boiti-Leon-Manna-Pempinelli equation. Wave Motion 121, 103180 (2023)

    Google Scholar 

  43. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

  44. Zhang, R., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    MathSciNet  Google Scholar 

  45. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  46. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    MathSciNet  Google Scholar 

  47. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  48. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  49. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Google Scholar 

  50. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid. Nonlinear Dyn. 111, 8647–8658 (2023)

    Google Scholar 

  51. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108, 4181–4194 (2022)

    Google Scholar 

  52. Chen, Y., Lü, X., Wang, X.L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 138, 492 (2023)

  53. Gao, X.Y.: Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023). Results Phys. 53, 106932 (2023)

  54. Gao, X.Y.: Letter to the Editor on Results Phys. 52, 106822 (2023) and beyond: In pursuit of a (3+1)-dimensional generalized nonlinear evolution system for the shallow water waves. Results Phys. 54, 107032 (2023)

  55. Gao, X.Y.: Letter to the Editor: Singular-manifold view on a (3+1)-dimensional fourth-order nonlinear equation in a fluid via Int. J. Numer. Method. H. 32, 1664 (2022). Int. J. Numer. Method. Heat Fluid Flow 33, 3561–3563 (2023)

  56. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 86, 572–577 (2023)

  57. Oliari, V., Agrell, E., Alvarado, A.: Regular perturbation on the group-velocity dispersion parameter for nonlinear fibre-optical communications. Nat. Commun. 11, 933 (2020)

  58. Kraych, A.E., Suret, P., El, G., Randoux, S.: Nonlinear evolution of the locally induced modulational instability in fiber optics. Phys. Rev. Lett. 122, 054101 (2019)

    Google Scholar 

  59. McCall, M., Hahn, E.L.: Self-induced transparency by pulsed coherent light. Phys. Rev. Lett. 18, 908 (1967)

    Google Scholar 

  60. Maimistov, A.I., Basharov, A.V.: Nonlinear Optical Waves. Springer, Berlin (1999)

  61. McCall, M., Hahn, E.L.: Self-induced transparency. Phys. Rev. Lett. 183, 457 (1969)

  62. Maimistov, A.I., Manykin, E.A.: Propagation of ultrashort optical pulses in resonant non-linear light guides. Sov. Phys. JETP 58, 685 (1983)

    Google Scholar 

  63. Nakazawa, M., Yamada, E., Kubota, H.: Coexistence of a self-induced-transparency soliton and a nonlinear Schrödinger soliton in an erbium-doped fiber. Phys. Rev. A 44, 5973 (1991)

  64. Nakazawa, M., Yamada, E., Kubota, H.: Coexistence of self-induced transparency soliton and nonlinear Schrödinger soliton. Phys. Rev. Lett. 66, 2625 (1991)

  65. Sun, W.R., Wang, L., Xie, X.Y.: Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber. Phys. A 499, 58–66 (2018)

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the BUPT Excellent Ph.D. Students Foundation under Grant No. CX2022156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Shen.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tian, B., Zhou, TY. et al. Localized waves of the higher-order nonlinear Schrödinger-Maxwell-Bloch system with the sextic terms in an erbium-doped fiber. Nonlinear Dyn 112, 1275–1290 (2024). https://doi.org/10.1007/s11071-023-09005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09005-5

Keywords

Navigation