Skip to main content
Log in

Fixed-time nonsingular terminal sliding mode control for a class of nonlinear systems with mismatched disturbances and its applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates a new fixed-time control scheme for a general class of nonlinear systems with high-order mismatched disturbances. An integral sliding mode surface is designed based on the estimations of the mismatched disturbances, which enables the control scheme to reject the mismatched disturbances. A continuous terminal sliding mode control law is then proposed, which guarantees that the convergence time is finite and independent of the initial conditions. Furthermore, the rigorous analysis for the fixed-time stability is presented with the bi-limit homogeneous property and Lyapunov theory. Finally, both the numerical simulations and the experimental tests are given to verify the superiority of the proposed fixed-time control scheme. The core of the proposed control scheme, which is developed with the nonsingular terminal sliding mode control (NTSMC) technique and fixed-time disturbance observer, ensures the fixed-time convergence and strong robustness to mismatched disturbances. The practical significance of the proposed control design is demonstrated by a real application to a crane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  1. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Zuo, Z., Song, J., Tian, B., Basin, M.: Robust fixed-time stabilization control of generic linear systems with mismatched disturbances. IEEE Trans. Syst. Man, and Cybernet.: Syst. 52(2), 759–768 (2022)

    Google Scholar 

  3. Yang, J., Sun, J., Zheng, W., Li, S.: Periodic event-triggered robust output feedback control for nonlinear uncertain systems with time-varying disturbance. Automatica 94, 324–333 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Utkin, I.: Sliding Modes in Control and Optimization. Springer Verlag, Berlin, Heidelberg (1992)

    MATH  Google Scholar 

  5. Fridman, L., Shtessel, Y., Edwards, C., Yan, X.G.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4–5), 399–412 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Seeber, R.: Three counterexamples to recent results on finite- and fixed-time convergent controllers and observers. Automatica 112, 1–5 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Fang, X., Liu, F.: High-order mismatched disturbance rejection control for small-scale unmanned helicopter via continuous nonsingular terminal sliding-mode approach. Int. J. Robust Nonlinear Control 29(4), 935–948 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Qiao, L., Zhang, W.: Trajectory tracking control of auvs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Industr. Inf. 16(2), 1248–1258 (2020)

    Google Scholar 

  9. Gurumurthy, G., Das, D.K.: Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear systems. Eur. J. Control. 57, 232–241 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, J., Zhang, N., Shen, G., Xia, Y.: Analysis and design of chattering-free discrete-time sliding mode control. Int. J. Robust Nonlinear Control 29(18), 6572–6581 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Lu, B., Fang, Y., Sun, N.: Continuous sliding mode control strategy for a class of nonlinear underactuated systems. IEEE Trans. Autom. Control 63(10), 3471–3478 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Cuong, H.M., Dong, H.Q., Trieu, P.V., Tuan, L.A.: Adaptive fractional-order terminal sliding mode control of rubber-tired gantry cranes with uncertainties and unknown disturbances. Mech. Syst. Signal Process. 154, 107601 (2021)

    Google Scholar 

  13. Cuong, H.M., Thai, N.V., Trieu, P.V., Dong, H.Q., Nam, T.T., Viet, T.X., Nho, L.C., Tuan, L.A.: Nonsingular fractional-order integral fast-terminal sliding mode control for underactuated shipboard cranes. J. Franklin Inst. 359, 6587–6606 (2022)

    MathSciNet  MATH  Google Scholar 

  14. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control. Optim. 47(4), 1814–1850 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Tian, B., Lu, H., Zuo, Z., Wang, H.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn. 94(4), 2889–2899 (2018)

    MATH  Google Scholar 

  16. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Zuo, Z.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2015)

    MathSciNet  Google Scholar 

  18. Ni, J., Liu, L., Liu, C., Li, S.: Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system. IEEE Trans. Circuits Syst. II Express Briefs 64(2), 151–155 (2017)

    Google Scholar 

  19. Hou, H., Yu, X., Xu, L., Rsetam, K., Cai, Z.: Finite-time continuous terminal sliding mode control of servo motor systems. IEEE Trans. Industr. Electron. 67(7), 5647–5656 (2020)

    Google Scholar 

  20. Zuo, Z., Tian, B., Defoort, D., Ding, Z.: Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Industr. Electron. 60(1), 160–169 (2013)

    Google Scholar 

  22. Yang, J., Su, J., Li, S., Yu, X.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Industr. Inf. 10(1), 604–614 (2014)

    Google Scholar 

  23. Qian, Y., Hu, D., Chen, Y., Fang, Y.: Programming-based optimal learning sliding mode control for cooperative dual ship-mounted cranes against unmatched external disturbances. IEEE Transactions on Automation Science and Engineering; Early Access: 1–12 (2022)

  24. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49, 2287–2291 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, L., Yang, J.: Continuous nonsingular terminal sliding mode control for nonlinear systems subject to mismatched terms. Asian J. Control 24(2), 885–894 (2020)

    MathSciNet  Google Scholar 

  26. Rauf, A., Zafran, M., Khan, A., Tariq, A.R.: Finite-time nonsingular terminal sliding mode control of converter-driven DC motor system subject to unmatched disturbances. Int. Trans. Electric. Energy Syst. 31(11), e13070 (2021)

    Google Scholar 

  27. Razzaghian, A., Moghaddam, R.K., Pariz, N.: Fractional-order nonsingular terminal sliding mode control via a disturbance observer for a class of nonlinear systems with mismatched disturbances. J. Vib. Control 27(1–2), 140–151 (2021)

    MathSciNet  Google Scholar 

  28. Razzaghian, A., Moghaddam, R.K., Pariz, N.: Disturbance observer-based fractional-order nonlinear sliding mode control for a class of fractional-order systems with matched and mismatched disturbances. Int. J. Dynam. Control 9, 671–678 (2021)

    MathSciNet  Google Scholar 

  29. Chen, W.-H.: Disturbance observer-based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2003)

    Google Scholar 

  30. Shtessel, Y., Shkolnikov, I., Levant, A.: Smooth second-order sliding mode: missile guidance application. Automatica 43(8), 1470–1476 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Angulo, M., Moreno, J., Fridman, L.: Robust exact uniformly convergent arbitrary order differentiator. Automatica 49(8), 2489–2495 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Filippov, A.: Differential Equations with Discontinuous Right-Hand Side. The Netherlands, Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  33. Angulo, M., Moreno, J., Fridman, L.: Robust exact uniformly convergent arbitrary order differentiator. Automatica 49(8), 2489–2495 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Chen, M., Wang, H., Liu, X.: Adaptive fuzzy practical fixed-time tracking control of nonlinear systems. IEEE Trans. Fuzzy Syst. 29(3), 664–673 (2021)

    Google Scholar 

  35. Basin, M., Shtessel, Y., Aldukali, F.: Continuous finite- and fixed-time high-order regulators. J. Franklin Inst. 353, 5001–5012 (2016)

  36. Wie, B., Bernstein, D.: Benchmark problems for robust control design. American Control Conference; San Diego, CA, USA: 2047–2048 (1990)

  37. Zong, Q., Zhao, Z., Zhang, J.: High-order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory Appl. 4(7), 1282–1289 (2008)

    Google Scholar 

  38. Chen, H., Fang, Y., Sun, N.: An adaptive tracking control method with swing suppression for 4-DOF tower crane systems. Mech. Syst. Signal Process. 123, 426–442 (2019)

    Google Scholar 

  39. Yang, T., Sun, N., Chen, H., Fang, Y.: Motion trajectory-based transportation con for 3-d boom cranes: analysis, design, and experiments. IEEE Trans. Industr. Electron. 66(5), 3636–3646 (2019)

    Google Scholar 

  40. Sun, N., Fang, Y., Chen, H.: A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments. IEEE Trans. Industr. Electron. 62(1), 453–465 (2015)

    Google Scholar 

  41. Lu, B., Fang, Y., Sun, N.: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47, 116–125 (2017)

    Google Scholar 

  42. Chen, J.C.L., Lee, T.H., Tan, C.P.: A sliding mode observer for robust fault reconstruction in a class of nonlinear non-infinitely observable descriptor systems. Nonlinear Dyn. 101, 1023–1036 (2020)

    MATH  Google Scholar 

  43. Sun, J., Pu, Z., Yi, J., Liu, Z.: Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers. IEEE Trans. Industr. Inf. 16(2), 1192–1203 (2020)

    Google Scholar 

  44. Yang, F., Wei, C., Wu, R., Cui, N.: Non-recursive fixed-time convergence observer and extended state observer. IEEE Access 6, 62339–62351 (2018)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under grants 62273165, 61833007, the China Postdoctoral Science Foundation under Grants 2021M702505, 2023T160493, and the 111 Project under Grants B23008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Fang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Define the estimation errors \(e_i^0 = z_i^0 - x_i\) and \(e_i^j = z_i^j - d_i^{(j-1)}\) for \(i=1,\cdots ,n\) and \(j=1,\cdots ,\ell _i\).

The error dynamics of the disturbance observer (2) is formulated by

$$\begin{aligned} \left\{ \begin{array}{l} \dot{e}_i^0 = e_i^1 - \lambda _i^0 {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^0}} - \gamma _i^0 \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^0}, \\ \dot{e}_i^1 = e_i^2 - \lambda _i^1 {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^1}} - \gamma _i^1 \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^1}, \\ \vdots \\ \dot{e}_i^{\ell _i} = - \lambda _i^{\ell _i} {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^{\ell _i} }} - \gamma _i^{\ell _i} \big \lceil {e_i^0} \big \rfloor ^{\beta _i^{\ell _i} } - d_i^{(\ell _i)}. \\ \end{array} \right. \end{aligned}$$
(23)

The compact expression of the error system (23) can be rewritten by

$$\begin{aligned} \dot{e}_i = f_i(e_i) + D_i, \end{aligned}$$
(24)

where the error vector \(e_i=[e_i^0,\ldots ,e_i^{\ell _i}]^T\), the functional vector \(f_i(e_i) =[f_i^0(e_i),\ldots ,f_i^{\ell _i}(e_i)]^T\) with \(f_i^{j}(e_i) = e_i^{j+1} - \lambda _i^j {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^j}} - \gamma _i^j \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^j} \) for \(j=0,\cdots ,\ell _i-1\), and \(f_i^{\ell _i}(e_i) = - \lambda _i^{\ell _i} {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^{\ell _i}}} - \gamma _i^{\ell _i} \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^{\ell _i}} \), and the disturbance vector \(D_i = [0,\ldots ,0,- d_i^{(\ell _i)}]^T\).

The subsequent proof will be presented with two steps. First of all, the stability of undisturbed error system (24) will be discussed, i.e., \(D_i=0\). Then, the fixed-time convergence of complete error dynamic system (24) will be investigated, i.e., \(D_i\ne 0\).

Step 1: It follows from [14] that the vector field \( f_i(e_i)\) is bi-limit homogeneous with associated triples \((r_{i,0},k_{i,0},f_{i,0})\) and \((r_{i,\infty },k_{i,\infty },f_{i,\infty })\), where \(r_{i,0}=[1,\alpha _i,\cdots ,\ell _i\alpha _i-(\ell _i-1)]\), \(r_{i,\infty }=[1,\beta _i,\cdots ,\ell _i\beta _i-(\ell _i-1)]\), \(k_{i,0}=\alpha _i-1\), \(k_{i,\infty }=\beta _i-1\), and the approximating vector fields are selected as

$$\begin{aligned} f_{i,0}(e_i)= & {} \left[ {\begin{array}{*{20}{c}} e_i^1 - \lambda _i^0 {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^0}}\\ e_i^2 - \lambda _i^1 {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^1}}\\ \vdots \\ - \lambda _i^{\ell _i} {\big \lceil {e_i^0} \big \rfloor ^{\alpha _i^{\ell _i} }} \end{array}} \right] ,\nonumber \\ f_{i,\infty }(e_i)= & {} \left[ {\begin{array}{*{20}{c}} e_i^1 - \gamma _i^0 \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^0}\\ e_i^2 - \gamma _i^1 \big \lceil {e_i^0 } \big \rfloor ^{\beta _i^1}\\ \vdots \\ - \gamma _i^{\ell _i} \big \lceil {e_i^0} \big \rfloor ^{\beta _i^{\ell _i} } \end{array}} \right] . \end{aligned}$$
(25)

According to [43], we can obtain that \(\dot{e}_i =f_{i,0}(e_i)\), \(\dot{e}_i =f_{i,\infty }(e_i)\), and \(\dot{e}_i =f_{i}(e_i)\) are globally asymptotically stable. Furthermore, it follows from [14] that the states of the system \(\dot{e}_i =f_{i}(e_i)\) will converge to the origin within a fixed time. Additionally, according to [44], there exists a well-defined Lyapunov function \(V_i(e_i)\) and a real constant \(p>0\), such that the time derivative along the dynamics \(\dot{e}_i =f_{i}(e_i)\) satisfies

$$\begin{aligned}{} & {} \frac{{\partial V_i(e_i)}}{{\partial {e_i}}} f_i(e_i) \nonumber \\{} & {} \quad \le - p \left( V_i(e_i)^\frac{k_{i,V_0}+k_{i,0}}{k_{i,V_0}} + V_i(e_i)^\frac{k_{i,V_\infty }+k_{i,\infty }}{k_{i,V_\infty }} \right) , \end{aligned}$$
(26)

for real numbers \(k_{i,V_0}\ge \textrm{max}\{1,\alpha _i,\cdots ,\ell _i\alpha _i-(\ell _i-1)\}\) and \(k_{i,V_\infty }\ge \textrm{max} \{1,\beta _i,\cdots , \ell _i\beta _i-(\ell _i-1)\}\).

Step 2: Let us reconsider the disturbance \(D_i\). The time derivative of \(V_i(e_i)\) along the error dynamics (24) can be presented by

$$\begin{aligned} \dot{V}_i(e_i)= \frac{{\partial V_i(e_i)}}{{\partial {e_i}}} f_i(e_i) - \frac{{\partial V_i(e_i)}}{{\partial {e_i^{\ell _i}}}} d_i^{(\ell _i)}. \end{aligned}$$
(27)

According to the Theorem 1 of [44], we can find a real constant \(q>0\) to satisfy

$$\begin{aligned}{} & {} \left| - \frac{{\partial V_i(e_i)}}{{\partial {e_i^{r_i}}}} d_i^{(\ell _i-1)} \right| \nonumber \\{} & {} \quad \le \left\{ \begin{array}{l} 2q { V_i(e_i)^\frac{k_{i,V_0} - [r_{i,0}]_{\ell _i+1}}{k_{i,V_0}}} L_i, ~~~~\textrm{for}~V_i(e_i)\le 1, \\ 2q { V_i(e_i)^\frac{k_{i,V_\infty } - [r_{i,\infty }]_{\ell _i+1}}{k_{i,V_\infty }}} L_i,~~\textrm{for}~V_i(e_i) \ge 1, \end{array} \right. \nonumber \\ \end{aligned}$$
(28)

where \([r_{i,0}]_{\ell _i+1}\) and \([r_{i,\infty }]_{\ell _i+1}\) denote the \((\ell _i+1)\)-th element of \(r_{i,0}\) and \(r_{i,\infty }\), respectively.

Combining (26) and (28), and considering the dominant scopes of two power functions, we have

$$\begin{aligned} \dot{V}_i(e_i)\le & {} - p V_i(e_i)^\frac{k_{i,V_\infty }+k_{i,\infty }}{k_{i,V_\infty }} - p V_i(e_i)^\frac{k_{i,V_0}+k_{i,0}}{k_{i,V_0}} \nonumber \\{} & {} + 2q { V_i(e_i)^\frac{k_{i,V_\infty } - [r_{i,\infty }]_{\ell _i+1}}{k_{i,V_\infty }}} L_i \end{aligned}$$
(29)

for \(V_i(e_i)\ge 1\), and

$$\begin{aligned} \dot{V}_i(e_i)\le & {} - p V_i(e_i)^\frac{k_{i,V_0}+k_{i,0}}{k_{i,V_0}} - p V_i(e_i)^\frac{k_{i,V_\infty }+k_{i,\infty }}{k_{i,V_\infty }} \nonumber \\{} & {} + 2q { V_i(e_i)^\frac{k_{i,V_0} - [r_{i,0}]_{\ell _i+1}}{k_{i,V_0}}} L_i \end{aligned}$$
(30)

for \(V_i(e_i)\le 1\).

Define two constants \(c_1= (\frac{2qL_i}{p})^\frac{k_{i,V_\infty } k_{i,V_0}}{k_{i,V_\infty }k_{i,0} +k_{i,V_0}[r_{i,\infty }]_{\ell _i+1}} \) and \(c_2= (\frac{2qL_i}{p})^\frac{k_{i,V_0} k_{i,V_\infty }}{k_{i,V_0}k_{i,\infty } +k_{i,V_\infty }[r_{i,0}]_{\ell _i+1}}\).

For the clarity of presentation, the following analysis will be given with two cases.

Case 1: If the Lipschitz constant \(L_i\) satisfies \(\frac{2qL_i}{p}\ge 1\), then \(c_1\ge 1\) and \(c_2\ge 1\). According to the inequality (30), we have

$$\begin{aligned} \begin{array}{l} \dot{V}_i(e_i) \le - p V_i(e_i)^\frac{k_{i,V_\infty }+k_{i,\infty }}{k_{i,V_\infty }},~~\textrm{for}~V_i(e_i)\ge c_1\ge 1. \end{array}\nonumber \\ \end{aligned}$$
(31)

Define a set

$$\begin{aligned} \begin{array}{l} S_1 = \{e_i | V_i(e_i)<c_1 \}. \end{array} \end{aligned}$$
(32)

Therefore, if the initial value of estimation error \(e_i\) is at the outside of the set \(S_1\), then \(e_i\) will converge into \(S_1\) in a finite settling time \(T_{o1} = \frac{1}{p}\frac{k_{i,V_\infty }}{k_{i,\infty }} c_1 ^{-\frac{k_{i,\infty }}{k_{i,V_\infty }}}\), which is independent of initial conditions.

Case 2: If the Lipschitz constant \(L_i\) satisfies \(\frac{2qL_i}{p} < 1\), then we have

$$\begin{aligned} \dot{V}_i(e_i) \le \left\{ \begin{array}{l} - p V_i(e_i)^\frac{k_{i,V_0}+k_{i,0}}{k_{i,V_0}}, ~~~~\textrm{for}~c_2 \le V_i(e_i)\le 1, \\ - p V_i(e_i)^\frac{k_{i,V_\infty }+k_{i,\infty }}{k_{i,V_\infty }},~~\textrm{for}~V_i(e_i) \ge 1. \end{array} \right. \end{aligned}$$
(33)

Define a set

$$\begin{aligned} \begin{array}{l} S_2 = \{e_i | V_i(e_i)<c_2 \}. \end{array} \end{aligned}$$
(34)

Therefore, if the initial value of estimation error \(e_i\) is at the outside of the set \(S_2\), then \(e_i\) will converge into \(S_2\) in a finite settling time \(T_{o2} = \frac{1}{p} (\frac{k_{i,V_\infty }}{k_{i,\infty }} + \frac{k_{i,V_0}}{|k_{i,0}|})\), which is also independent of initial conditions.

To sum up, the disturbance estimation error \(e_i\) can converge to the small neighborhood of the origin in a finite settling time \(T_o= \textrm{max} \{T_{o1},T_{o2} \}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Zhong, Q., Liu, F. et al. Fixed-time nonsingular terminal sliding mode control for a class of nonlinear systems with mismatched disturbances and its applications. Nonlinear Dyn 111, 21065–21077 (2023). https://doi.org/10.1007/s11071-023-08970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08970-1

Keywords

Navigation