Skip to main content
Log in

Multi-stability in cavity QED with spin–orbit coupled Bose–Einstein condensate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the steady-state multi-stability in a cavity system containing spin–orbit coupled Bose–Einstein condensate and driven by a strong pump laser. The applied magnetic field splits the Bose–Einstein condensate into pseudo-spin states, which then become momentum sensitive with two counter propagating Raman lasers directly interacting with ultra-cold atoms. After governing the steady-state dynamics for all associated subsystems, we show the emergence of multi-stable behavior of cavity photon number, which is unlike previous investigation on cavity-atom systems. However, this multi-stability can be tuned with associated system parameters. Furthermore, we illustrate the occurrence of mixed-stability behavior for atomic population of the pseudo-spin-\(\uparrow \) and spin-\(\downarrow \) states, which appear in so-called bi-unstable form. The collective behavior of these atomic number states interestingly possesses a population transitional phase (or population equilibrium intersection) among both of the spin states, which can be enhanced and controlled by spin–orbit coupling and Zeeman field effects. Additionally, we illustrate the emergence of another equilibrium intersection mediated by the increase in mechanical dissipation rate of the pseudo-spin states. These equilibrium intersections or population transitional phase could be caused by the non-trivial behavior of synthetic spin state mediated by cavity. Our findings are not only crucial for the subject of optical switching but also could provide a foundation for future studies on mechanical aspect of synthetic atomic states with cavity quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The computational data generated and analyzed to obtain the results during study are available from the corresponding author upon reasonable request.

References

  1. Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006)

    Google Scholar 

  2. Haroche, S., Raimond, J.-M.: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  3. Haroche, S., Raimond, J.M.: Cavity quantum electrodynamics. Sci. Am. 268, 54–60 (1993)

    Google Scholar 

  4. Haroche, S.: Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013)

    Google Scholar 

  5. Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    MathSciNet  Google Scholar 

  6. Miller, R., Northup, T.E., Birnbaum, K.M., Boca, A., Boozer, A.D., Kimble, H.J.: Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B: At. Mol. Opt. Phys. 38, S551 (2005)

    Google Scholar 

  7. Goy, P., Raimond, J.M., Gross, M., Haroche, S.: Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903 (1983)

    Google Scholar 

  8. Monroe, C.: Quantum information processing with atoms and photons. Nature 416, 238–246 (2002)

    Google Scholar 

  9. Stajic, J.: The future of quantum information processing. Science 339, 1163 (2013)

    Google Scholar 

  10. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose–Einstein condensate. Science 322, 235 (2008)

    Google Scholar 

  11. Zhang, K., Chen, W., Bhattacharya, M., Meystre, P.: Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys. Rev. A 81, 013802 (2010)

    Google Scholar 

  12. Djorwe, P., Yves Effa, J., G. Nana Engo, S.: Hidden attractors and metamorphoses of basin boundaries in optomechanics. Nonlinear Dyn. 111, 5905–5917 (2023)

    Google Scholar 

  13. Rosenberg, S., Shoshani, O.: Amplifying the response of a driven resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn. 105, 1427–1436 (2021)

    Google Scholar 

  14. Akram, M.J., Saif, F.: Complex dynamics of nano-mechanical membrane in cavity optomechanics. Nonlinear Dyn. 83, 963–970 (2016)

    Google Scholar 

  15. Deka, J.P., Sarma, A.K.: Chaotic dynamics and optical power saturation in parity-time (PT) symmetric double-ring resonator. Nonlinear Dyn. 96, 565–571 (2019)

    MATH  Google Scholar 

  16. Yasir, K.A., Ayub, M., Saif, F.: Exponential localization of moving end mirror in optomechanics. J. Mod. Opt. 61, 1318 (2014)

    Google Scholar 

  17. Ayub, M., Yasir, K.A., Saif, F.: Dynamical localization of matter waves in optomechanics. Laser Phys. 24, 115503 (2014)

    Google Scholar 

  18. Paternostro, M., Chiara, G.D., Palma, G.M.: Cold-atom-induced control of an optomechanical device. Phys. Rev. Lett. 104, 243602 (2010)

    Google Scholar 

  19. Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Entanglement swapping with local certification: application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012)

    Google Scholar 

  20. Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Continuous-variable-entanglement swapping and its local certification: entangling distant mechanical modes. Phys. Rev. A 89, 022331 (2014)

    Google Scholar 

  21. Sete, E.A., Eleuch, H., Ooi, C.H.R.: Light-to-matter entanglement transfer in optomechanics. J. Opt. Soc. Am. B 31, 2821 (2014)

    Google Scholar 

  22. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    Google Scholar 

  23. Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Google Scholar 

  24. Singh, S., et al.: Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror. Phys. Rev. A 86, 021801 (2012)

    Google Scholar 

  25. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)

    Google Scholar 

  26. Weis, S., et al.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Google Scholar 

  27. Peng, B., \(\ddot{O}\)zdemir, S.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 10, 1038 (2014)

  28. Safavi-Naeini, A.H., et al.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Google Scholar 

  29. Yasir, K.A., Liang, Z., Xianlong, G., Liu, W.M.: Electromagnetically induced transparencies with two transverse Bose–Einstein condensates in a four-mirror cavity. Eur. Phys. J. Plus 138, 29 (2023)

    Google Scholar 

  30. Munir, A., Yasir, K.A., Liu, W.M., Xianlong, G.: Force-dependent amplification and attenuation in a quantum well-based optomechanical system. Eur. Phys. J. Plus 137, 1143 (2022)

    Google Scholar 

  31. Yasir, K.A., Liu, W.M.: Tunable bistability in hybrid Bose-Einstein condensate optomechanics. Sci. Rep. 5, 10612 (2015)

    Google Scholar 

  32. Yasir, K.A.: Controlled bistable dynamics of a four-mirror cavity-optomechanics with two movable mirrors. Opt. Commun. 488, 126820 (2021)

    Google Scholar 

  33. Yasir, K.A., Liu, W.M.: Controlled electromagnetically induced transparency and Fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 22651 (2016)

    Google Scholar 

  34. Galitski, V., Spielman, I.B.: Spin-orbit coupling in quantum gases. Nature 494, 49 (2013)

    Google Scholar 

  35. Liu, X.J., Borunda, M.F., Liu, X., Sinova, J.: Effect of induced spin-orbit coupling for atoms via laser fields. Phys. Rev. Lett. 102, 046402 (2009)

    Google Scholar 

  36. Lin, Y.J., Compton, R.L., Jim\(\acute{e}\)nez-Garc\(\acute{i}\)a, K., Porto, J.V., Spielman, I.B.: Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628 (2009)

  37. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Google Scholar 

  38. Konig, M., et al.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Google Scholar 

  39. Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Google Scholar 

  40. Hsieh, D., et al.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008)

    Google Scholar 

  41. Li, X., Zhao, E., Liu, W.V.: Topological states in a ladder-like optical lattice containing ultracold atoms in higher orbital bands. Nat. Commun. 4, 4023 (2013)

    Google Scholar 

  42. Sun, K., Liu, W.V., Hemmerich, A., Sarma, S.D.: Topological semimetal in a fermionic optical lattice. Nat. Phys. 8, 67–70 (2012)

    Google Scholar 

  43. Koralek, J.D., et al.: Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009)

    Google Scholar 

  44. Hamner, C., Zhang, Y., Khamehchi, M.A., Davis, M.J., Engels, P.: Spin-orbit-coupled Bose–Einstein condensates in a one-dimensional optical lattice. Phys. Rev. Lett. 114, 070401 (2015)

    Google Scholar 

  45. Lin, Y.J., Jim\(\acute{e}\)nez-Garc\(\acute{\iota }\)a, K., Spielman, I.B.: Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83 (2011)

  46. Hu, H., Ramachandhran, B., Pu, H., Liu, X.J.: Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps. Phys. Rev. Lett. 108, 010402 (2012)

    Google Scholar 

  47. Deng, Y., Cheng, J., Jing, H., Yi, S.: Bose–Einstein condensates with cavity-mediated spin-orbit coupling. Phys. Rev. Lett. 112, 143007 (2014)

    Google Scholar 

  48. Padhi, B., Ghosh, S.: Spin-orbit-coupled Bose-Einstein condensates in a cavity: route to magnetic phases through cavity transmission. Phys. Rev. A 90, 023627 (2014)

    Google Scholar 

  49. Dong, L., Zhou, L., Wu, B., Ramachandhran, B., Pu, H.: Cavity-assisted dynamical spin-orbit coupling in cold atoms. Phys. Rev. A 89, 011602(R) (2014)

    Google Scholar 

  50. Yasir, K.A., Zhuang, L., Liu, W.M.: Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Phys. Rev. A 95, 013810 (2017)

    Google Scholar 

  51. asir, K.A., Zhuang, L., Liu, W.M.: Topological nonlinear optics with spin-orbit coupled Bose-Einstein condensate in cavity. NPJ Quant. Inf. 8, 109 (2022)

    Google Scholar 

  52. Zibrov, S., et al.: Three-photon-absorption resonance for all-optical atomic clocks. Phys. Rev. A 72, 011801(R) (2005)

    Google Scholar 

  53. Brennecke, F., et al.: Cavity QED with a Bose–Einstein condensate. Nature 450, 268–271 (2007)

    Google Scholar 

  54. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008)

    Google Scholar 

  55. Dalibard, J., et al.: Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)

  56. Habib, G., B\(\acute{a}\)rtfai, A., Barrios, A. et al.: Bistability and delayed acceleration feedback control analytical study of collocated and non-collocated cases. Nonlinear Dyn. 108, 2075–2096 (2022)

  57. Kirrou, I., Belhaq, M.: Control of bistability in non-contact mode atomic force microscopy using modulated time delay. Nonlinear Dyn. 81, 607–619 (2015)

    Google Scholar 

  58. Anurag, Mondal, B., Shah, T., et al.: Chaos and order in librating quantum planar elastic pendulum. Nonlinear Dyn. 103, 2841–2853 (2021)

Download references

Acknowledgements

K.A.Y. acknowledges the support of Research Fund for International Young Scientists by NSFC under Grant No. KYZ04Y22050, Zhejiang Normal University research funding under Grant No. ZC304021914 and Zhejiang province postdoctoral research project under Grant Number ZC304021952. G.X.L. acknowledges the support of National Natural Science Foundation of China under Grant Nos. 11835011 and 12174346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ammar Yasir.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasir, K.A., Chengyong, Y. & Xianlong, G. Multi-stability in cavity QED with spin–orbit coupled Bose–Einstein condensate. Nonlinear Dyn 111, 21177–21189 (2023). https://doi.org/10.1007/s11071-023-08964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08964-z

Keywords

Navigation