Skip to main content
Log in

Non-Hermicity-induced multistability in two-level atom-cavity optomechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Non-Hermitian physics of optical as well as atomic systems is crucial for modern quantum mechanics and is the subject of increasing investigations. Here, we investigate the multi-stability of a non-Hermitian atomic optomechanical system consisting of a high-Q Fabry–P\(\acute{e}\)rot cavity with Bose–Einstein condensate (BEC). The external pump laser drives a strong cavity mode, which then interacts with trapped BEC. We engineer non-Hermicity in the atomic system by considering the dissipation of excited state to the ground state. The non-Hermitian effects induced by the excited state dissipation result in the modified atom-optomechanical interactions and form non-Hermitian optical potential. We develop coupled non-Hermitian quantum Langevin equations for optical and atomic (BEC) degrees of freedom. By governing the steady-state of the system, we show that the non-Hermicity in the system yields in multi-stable state of cavity photon number, unlike the Hermitian optomechanical systems. Further, we illustrate that the dissipation rate of the atomic excited state will also alter the multi-stable behavior of cavity photon number. We illustrate these effects by computing the effective steady-state potential of the system as a function of cavity photon number. The dissipation rate appears to be reducing steady-state photon number over a particular interval of effective potential. Our findings are not only important for the understanding of the non-Hermitian atom-cavity systems but our findings regarding the optical multi-stability are also crucial for the subject of optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The computational data generated and analyzed to obtain the results during study is available from the corresponding author upon reasonable request.].

References

  1. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  2. P. Meystre, A short walk through quantum optomechanics. Ann. Phys. 525, 215–233 (2013)

    Article  MATH  Google Scholar 

  3. M. Aspelmeyer, P. Meystre, K. Schwab, Quantum optomechanics. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  4. K.A. Yasir, L. Zhuang, W.-M. Liu, Topological nonlinear optics with spin-orbit coupled Bose–Einstein condensate in cavity. NPJ Quantum Inf. 8, 109 (2022)

    Article  ADS  Google Scholar 

  5. T.J. Kippenberg, K.J. Vahala, Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  Google Scholar 

  6. B. Chen, C. Jiang, K.-D. Zhu, Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83, 055803 (2011)

    Article  ADS  Google Scholar 

  7. K.A. Yasir, W.-M. Liu, Controlled electromagnetically induced transparency and fano resonances in hybrid bec-optomechanics. Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  8. D. Nagy, P. Domokos, A. Vukics, H. Ritsch, Nonlinear quantum dynamics of two bec modes dispersively coupled by an optical cavity. Eur. Phys. J. D 55, 659–668 (2009)

    Article  ADS  Google Scholar 

  9. K.A. Yasir, Controlled bistable dynamics of a four-mirror cavity-optomechanics with two movable mirrors. Opt. Commun. 488, 126820 (2021)

    Article  Google Scholar 

  10. I.M. Mirza, S.J. van Enk, Single-photon time dependent spectra in quantum optomechanics. Phys. Rev. A 90, 043831 (2014)

    Article  ADS  Google Scholar 

  11. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  12. C.R. Galley, R.O. Behunin, B.L. Hu, Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A 87, 043832 (2013)

    Article  ADS  Google Scholar 

  13. S.B. Jäger, J. Cooper, M.J. Holland, G. Morigi, Dynamical phase transitions to optomechanical superradiance. Phys. Rev. Lett. 123, 053601 (2019)

    Article  ADS  Google Scholar 

  14. Al Rehaily, A., Assahaly, S., Al Hmoud, M., Bougouffa, S. Ground-state cooling in cavity optomechanics with and without rotating-wave approximation. In AIP Conference Proceedings, Vol. 1976, p. 020024 (AIP Publishing LLC, 2018)

  15. Yong-Chun. Liu, Hu. Yu-Wen, C.W. Wong, Y.-F. Xiao, Review of cavity optomechanical cooling. Chin. Phys. B 22, 114213 (2013)

    Article  ADS  Google Scholar 

  16. F. Marquardt, A.A. Clerk, S.M. Girvin, Quantum theory of optomechanical cooling. J. Mod. Opt. 55, 3329–3338 (2008)

    Article  ADS  MATH  Google Scholar 

  17. A.H. Safavi-Naeini, J. Chan, J.T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, O. Painter, Laser noise in cavity optomechanical cooling and thermometry. New J. Phys. 15, 035007 (2013)

    Article  ADS  Google Scholar 

  18. Y.-C. Liu, Y.-F. Shen, Q. Gong, Y.-F. Xiao, Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Phys. Rev. A 89, 053821 (2014)

    Article  ADS  Google Scholar 

  19. K.A. Yasir, L. Zhuang, W.-M. Liu, Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Phys. Rev. A 95, 013810 (2017)

    Article  ADS  Google Scholar 

  20. J. Xia, Q. Qiao, G. Zhou, F.S. Chau, G. Zhou, Opto-mechanical photonic crystal cavities for sensing application. Appl. Sci. 10, 7080 (2020)

    Article  Google Scholar 

  21. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals. Nature 462, 78–82 (2009)

    Article  ADS  Google Scholar 

  22. D.E. Chang, A.H. Safavi-Naeini, M. Hafezi, O. Painter, Slowing and stopping light using an optomechanical crystal array. New J. Phys. 13, 023003 (2011)

    Article  ADS  Google Scholar 

  23. X.Z. Hao, X.Y. Zhang, Y.H. Zhou, W. Li, S.C. Hou, X.X. Yi, Gain-saturation-induced selfsustained oscillations in non-Hermitian optomechanics. Phys. Rev. A 103, 053508 (2021)

    Article  ADS  Google Scholar 

  24. Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, M. Xiao, Non-Hermitian optics in atomic systems. J. Phys. B Atom. Mol. Opt. Phys. 51, 072001 (2018)

    Article  ADS  Google Scholar 

  25. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having pt symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. H. Jing, ŞK. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, F. Nori, Optomechanically-induced transparency in parity-time symmetric micro resonators. Sci. Rep. 5, 1–7 (2015)

    Article  Google Scholar 

  27. W. Li, Y. Jiang, C. Li, H. Song, Parity-time-symmetry enhanced optomechanically induced-transparency. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  28. X.Y. Zhang, Y.H. Zhou, Y.Q. Guo, X.X. Yi, Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A 98, 033832 (2018)

    Article  ADS  Google Scholar 

  29. H. Xiong, W. Ying, Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    Article  ADS  Google Scholar 

  30. X.Y. Zhang, Y.Q. Guo, P. Pei, X.X. Yi, Optomechanically induced absorption in parity-time symmetric optomechanical systems. Phys. Rev. A 95, 063825 (2017)

    Article  ADS  Google Scholar 

  31. K.A. Yasir, Z. Liang, W.-M. Liu, G. Xianlong, Electromagnetically induced transparencies with two transverse Bose-Einstein condensates in a four-mirror cavity. Eur. Phys. J. Plus 138, 29 (2023)

    Article  ADS  Google Scholar 

  32. T.P. Purdy, P.-L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)

    Google Scholar 

  33. Z. Zhang, Y.-P. Wang, X. Wang, Pt-symmetry-breaking-enhanced cavity optomechanical magnetometry. Phys. Rev. A 102, 023512 (2020)

    Article  ADS  Google Scholar 

  34. Z. Feng, J. Ma, X. Sun, Parity-time-symmetric mechanical systems by the cavity optomechanical effect. Opt. Lett. 43, 4088–4091 (2018)

    Article  ADS  Google Scholar 

  35. D.W. Schönleber, A. Eisfeld, R. El-Ganainy, Optomechanical interactions in non-Hermitian photonic molecules. New J. Phys. 18, 045014 (2016)

    Article  ADS  Google Scholar 

  36. H. Wang, X. Zhang, J. Hua, D.L. Lu, M.Y. Chen, Topological physics of non-Hermitian optics and photonics: a review. J. Opt. 23, 123001 (2021)

    Article  ADS  Google Scholar 

  37. J. Li, X. Zhan, C. Ding, D. Zhang, W. Ying, Enhanced nonlinear optics in coupled optical microcavities with an unbroken and broken paritytime symmetry. Phys. Rev. A 92, 043830 (2015)

    Article  ADS  Google Scholar 

  38. P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, Z.-M. Zhang, Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  39. B. Sütlüoğlu, C. Bulutay, Static synthetic gauge field control of double optomechanically induced transparency in a closed-contour interaction scheme. Phys. Rev. A 104, 033504 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y. Takasu, T. Yagami, Y. Ashida, R. Hamazaki, Y. Kuno, Y. Takahashi, Ptsymmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation. Prog. Theor. Exp. Phys. 2020, 12A110 (2020)

    Article  MATH  Google Scholar 

  41. T. Shirai, S. Todo, H. de Raedt, S. Miyashita, Optical bistability in a low-photon-density regime. Phys. Rev. A 98, 043802 (2018)

    Article  ADS  Google Scholar 

  42. L.A. Lugiato, Ii theory of optical bistability. Prog. opt. 21, 69–216 (1984)

    Article  ADS  Google Scholar 

  43. A.J. van Wonderen, L.G. Suttorp, Instabilities for absorptive optical bistability in a nonideal Fabry–Pérot cavity. Phys. Rev. A 40, 7104–7112 (1989)

    Article  ADS  Google Scholar 

  44. C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, X. Shuai, Controllable optical bistability based on photons and phonons in a twomode optomechanical system. Phys. Rev. A 88, 055801 (2013)

    Article  ADS  Google Scholar 

  45. C. Jiang, X. Bian, Y. Cui, G. Chen, Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Soc. Am. B 33, 2099–2104 (2016)

    Article  ADS  Google Scholar 

  46. A. Hemmerich, C. Zimmermann, T.W. Hänsch, Subkhz Rayleigh resonance in a cubic atomic crystal. Europhys. Lett. 22, 89 (1993)

    Article  ADS  Google Scholar 

  47. B.P. Anderson, T.L. Gustavson, M.A. Kasevich, Atom trapping in nondissipative optical lattices. Phys. Rev. A 53, R3727–R3730 (1996)

    Article  ADS  Google Scholar 

  48. K.A. Yasir, W.-M. Liu, Tunable bistability in hybrid Bose-Einstein condensate optomechanics. Sci. Rep. 5, 1–13 (2015)

    Article  Google Scholar 

  49. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008)

    Article  ADS  Google Scholar 

  50. K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M. Dalmonte, P. Zoller, Constrained dynamics via the zeno effect in quantum simulation: implementing non-abelian lattice gauge theories with cold atoms. Phys. Rev. Lett. 112, 120406 (2014)

    Article  ADS  Google Scholar 

  51. M. Znojil, Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 385, 162–179 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. G. Dattoli, A. Torre, R. Mignani, Non-hermitian evolution of two-level quantum systems. Phys. Rev. A 42, 1467–1475 (1990)

    Article  ADS  Google Scholar 

  53. J.J. Roberts, B.D. Best, L. Mannocci, E.I. Fujioka, P.N. Halpin, D.L. Palka, L.P. Garrison, K.D. Mullin, T.V.N. Cole, C.B. Khan et al., Based cetacean density models for the US Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016)

    Article  ADS  Google Scholar 

  54. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, T. Esslinger, Cavity Qed with a Bose-Einstein condensate. Nature 450, 268–271 (2007)

    Article  ADS  Google Scholar 

  55. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  56. J. Wen, X. Jiang, L. Jiang, M. Xiao, Parity-time symmetry in optical microcavity systems. J. Phys. B Atom. Mol. Opt. Phys. 51, 222001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KAY acknowledges the support of Research Fund for International Young Scientists by NSFC under Grant No. KYZ04Y22050, Zhejiang Normal University research funding under Grant No. ZC304021914 and Zhejiang province postdoctoral research project under Grant Number ZC304021952. GXL acknowledges the support of National Natural Science Foundation of China under Grant Nos. 11835011 and 12174346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ammar Yasir.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chengyong, Y., Yasir, K.A. & Xianlong, G. Non-Hermicity-induced multistability in two-level atom-cavity optomechanics. Eur. Phys. J. Plus 138, 810 (2023). https://doi.org/10.1140/epjp/s13360-023-04437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04437-9

Navigation