Skip to main content
Log in

Approximation-free output feedback control for hydraulic active suspensions with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates an approximation-free output feedback prescribed performance control for a half-vehicle active suspension systems to improve driving comfort. Different from prior results that ignore actuator dynamics, this paper factored hydraulic actuators into the controller design. To solve the nonlinearities of the hydraulic active suspension system, an approximation-free, backstepping-free control scheme is developed, where function approximators (e.g. neural networks and fuzzy systems) and the explosion of complexity in backstepping design can be avoided. In this sense, the heavy computational burden can be removed. Moreover, by using a high-gain observer (HGO) and a prescribed performance function, the proposed controller simply requires the system outputs to be available and can achieve prescribed transient and steady-state performance of system outputs. To stop the propagation of peak phenomena caused by the HGO into the suspension system, the proposed controller is designed to saturate properly without affecting system performance attributes. The stability of the suspension system and the performance requirements of the system output are strictly proven. Finally, the comparative simulations are conducted to validate the effectiveness of the proposed method for improving suspension performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Yang, C., Xia, J., Park, J.H., Shen, H., Wang, Z.: Sliding mode control for uncertain active vehicle suspension systems: an event-triggered \(H_\infty \) control scheme. Nonlinear Dyn. 103, 3209–3221 (2021)

    Article  Google Scholar 

  2. Sun, W., Gao, H., Kaynak, O.: Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Trans. Mechatron. 18(3), 1072–1079 (2013)

    Article  Google Scholar 

  3. Liu, Y., Zhang, Y., Liu, L., Tong, S., Philip, C.L.: Adaptive finite-time control for half-vehicle active suspension systems with uncertain dynamics. IEEE/ASME Trans. Mechatron. 26(1), 168–178 (2021)

    Google Scholar 

  4. Du, M., Zhao, D., Yang, M., Chen, H.: Nonlinear extended state observer-based output feedback stabilization control for uncertain nonlinear half-car active suspension systems. Nonlinear Dyn. 100, 2483–2503 (2020)

    Article  MATH  Google Scholar 

  5. Huang, Y., Na, J., Wu, X., Liu, X., Guo, Y.: Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans. 54, 145–155 (2015)

    Article  Google Scholar 

  6. Qin, W., Ge, P., Liu, F., Long, S.: Adaptive robust control for active suspension systems: targeting nonholonomic reference trajectory and large mismatched uncertainty. Nonlinear Dyn. 104, 3861–3880 (2021)

    Article  Google Scholar 

  7. Guo, K., Li, M., Shi, W., Pan, Y.: Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans. Ind. Electron. 69(7), 7140–7150 (2022)

    Article  Google Scholar 

  8. Sun, W., Gao, H., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417–2422 (2013)

    Article  Google Scholar 

  9. Liu, S., Zheng, T., Zhao, D., Hao, R., Yang, M.: Strongly perturbed sliding mode adaptive controlof vehicle active suspension system considering actuator nonlinearity. Vehicle Syst Dyn. 60(2), 597–616 (2022)

    Article  Google Scholar 

  10. Liu, S., Hao, R., Zhao, D., Tian, Z.: Adaptive dynamic sur-face control for active suspension with electro-hydraulic actuator parameter uncertainty and external disturbance. IEEE Access 8, 156645–156653 (2020)

    Article  Google Scholar 

  11. Sun, W., Pan, H., Gao, H.: Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65, 4619–4626 (2016)

    Article  Google Scholar 

  12. Hao, R., Wang, H., Liu, S., Yang, M., Zheng, T.: Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems. Nonlinear Dyn. 105, 1559–1579 (2021)

    Article  Google Scholar 

  13. Zirkohi, M.M., Lin, T.C.: Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system. Nonlinear Dyn. 10(14), 1696–1705 (2016)

    Google Scholar 

  14. Liu, Y.J., Zeng, Q., Liu, L., Tong, S.: An adaptive neural network controller for active suspension systems with hydraulic actuator. IEEE Trans. Syst. Man Cybern. Syst. 50, 5351–5360 (2020)

    Article  Google Scholar 

  15. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Auto 50(4), 1217–1226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, C., Na, J., Wu, J., Chen, Q., Huang, Y.: Proportional-integral approximation-free control of robotic systems with unknown dynamics. IEEE/ASME Trans. Mechatron. 26(4), 2226–2236 (2020)

    Article  Google Scholar 

  17. Liang, J., Chen, Y., Lai, N., He, B., Miao, Z., Wang, Y.: Low-complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances. IEEE Trans. Ind. Inf. 18(7), 4632–4641 (2022)

    Article  Google Scholar 

  18. Huang, Y., Na, J., Wu, X., Gao, G.: Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans. Ind. Electron. 65(9), 7258–7267 (2018)

    Article  Google Scholar 

  19. Hu, X., Wen, G., Yin, S., Tan, Z., Pan, Z.: Approximation-free control based on the bioinspired reference model for suspension systems with uncertainty and unknown nonlinearity. Nonlinear Dyn. 111, 3149–3171 (2023)

    Article  Google Scholar 

  20. Na, J., Huang, Y., Pei, Q., Wu, X., Gao, G., Li, G.: Active suspension control of full-car systems without function approximation. IEEE/ASME Trans. Mechatron. 25(2), 779–791 (2020)

    Article  Google Scholar 

  21. Na, J., Huang, Y., Wu, X., Liu, Y., Li, G.: Active suspension control of quarter-car system with experimental validation. IEEE Trans. Syst. Man Cybern. 52(8), 4714–4726 (2022)

  22. Wang, T., Li, Y.: Neural-network adaptive output-feedback saturation control for uncertain active suspension systems. IEEE Trans. Cybern. 52(3), 1881–1890 (2022)

    Article  Google Scholar 

  23. Li, Y., Wang, T.: Neural network adaptive output-feedback optimal control for active suspension systems. IEEE Trans. Syst. Man Cybern. 52(6), 4021–4032 (2022)

    Article  Google Scholar 

  24. Zhang, Z., Li, Y.: Neuro-adaptive output-feedback optimized stochastic control for the active suspension systems with state constraints. Int. J. Adapt. Control Signal Process. 36(1), 38–68 (2022)

    Article  MathSciNet  Google Scholar 

  25. Choi, H.D., Ahn, C.K., Shi, P., Wu, L., Lim, M.T.: Dynamic outputfeedback dissipative control for T-S fuzzy systems with time-varying input delay and output constraints. IEEE Trans. Fuzzy Syst. 25(3), 511–526 (2017)

    Article  Google Scholar 

  26. Li, W., Xie, Z., Zhao, J., Wong, P.K., Li, P.: Fuzzy finite-frequency output feedback control for nonlinear active suspension systems with time delay and output constraints. Mech. Syst. Signal Process 132, 315–334 (2019)

    Article  Google Scholar 

  27. Dimanidis, I.S., Bechlioulis, C.P., Rovithakis, G.A.: Output Feedback Approximation-Free Prescribed Performance Tracking Control for Uncertain MIMO Nonlinear Systems. IEEE Trans. Autom. Control 65(12), 5058–5069 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, E. S.: Nonlinear indirect adaptive control of a quarter car active suspension. IEEE Int. Conf. Control Appl. 61-66 (1996)

  29. Sontag, E.D.: Mathematical Control Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  30. Bechlioulis, C.P., Theodorakopoulos, A., Rovithakis, G.A.: Output feedback stabilization with prescribed performance for uncertain nonlinear systems in canonical form. Decis. Control 52, 5084–5089 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Central Government to Guide Local Scientific and Technological Development of Hebei Province [No.216Z1902G]; Major Program of National Natural Science Foundation of China [U20A20332]; Innovation Group Program of Hebei Province [E202020317- 4]; Provincial Key Laboratory Performance Subsidy Project [22567612 H].

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

Proof of Lemma 4

Proof

The zero-dynamic system consists of unsprung subsystem (9c). In order to conduct zero-dynamic system, let \(s_1(t)\equiv s_2(t)\equiv 0\), which implies \(\vartheta _{ji}=0,j=1,2, i=1,2,3.\) Considering further (13), then \(x_{13}\) and \(x_{23}\) can be rewritten as follows:

$$\begin{aligned} x_{13}= & {} M\ddot{y}_{1r}+F_{d1}+F_{d2}+F_{s1}+F_{s2}-\varDelta F_{1}\nonumber \\ x_{23}= & {} I\ddot{y}_{2r}+a(F_{d1}+F_{s1})-b(F_{d2}+F_{s2})-\varDelta F_{2}\nonumber \\ \end{aligned}$$
(42)

By substituting (2) and (42) into unsprung subsystem (9c), the zero dynamics system can be obtained in compact form:

$$\begin{aligned} \dot{\bar{x}}^T=A\bar{x}^T+Bz^T+\omega ^T \end{aligned}$$
(43)

where \(\bar{x}=[x_4, x_5, x_6, x_7], z=[z_{r1}, \dot{z}_{r1}, z_{r2}, \dot{z}_{r2}]\)

$$\begin{aligned} \begin{aligned} A&=\left[ \begin{array}{cccc} 0 &{} 1 &{} 0 &{} 0 \\ -\frac{k_{t1}}{m_1} &{} -\frac{k_{b1}}{m_1} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} -\frac{k_{t2}}{m_2} &{} -\frac{k_{b2}}{m_2} \\ \end{array} \right] \\ B&=\left[ \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 0 \\ \frac{k_{t1}}{m_1} &{} \frac{k_{b1}}{m_1} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{k_{t2}}{m_2} &{} \frac{k_{b2}}{m_2} \\ \end{array} \right] , \omega =[0, \frac{\omega _1}{m_1},0, \frac{\omega _2}{m_2}]\\ \end{aligned} \end{aligned}$$
(44)

where

$$\begin{aligned} \begin{aligned} \omega _1&=-\frac{bM\ddot{y}_{1r}+I\ddot{y}_{2r}-b\varDelta F_{1}-\varDelta F_{2}}{a+b}\\ \omega _2&=-\frac{aM\ddot{y}_{1r}-I\ddot{y}_{2r}-a\varDelta F_{1}+\varDelta F_{2}}{a+b} \end{aligned} \end{aligned}$$

It is verified that the matrix A is Hurwitz, which implies there exist positive matrices PQ such that \(A^TP+PA=-Q\). Moreover, z and \(\omega \) are bounded because of the boundedness of \(M, I, \ddot{y}_{jr}, \varDelta F_{j}, z_{rj}, \dot{z}_{rj}, j=1,2\), i.e. \(\Vert z\Vert<\bar{z}, \Vert \omega \Vert <\bar{\omega }\). Define a Lyapunov function as \(V=\bar{x}P\bar{x}^T\), whose derivative is calculated as following:

$$\begin{aligned} \begin{aligned} \dot{V}&=\bar{x}(A^TP+PA)\bar{x}^T+2zB^TP\bar{x}^T+2\bar{x}P\omega ^T\\&\le -\lambda V+\eta \end{aligned} \end{aligned}$$
(45)

where \(\eta =\mu (\bar{z}^2+\bar{\omega }^2);~\lambda =\lambda _{\textrm{min}}(P^{-\frac{1}{2}}QP^{-\frac{1}{2}})-\frac{1}{\mu }(\lambda _{\textrm{max}} (P)+\lambda _{\textrm{max}}(P^{\frac{1}{2}}BB^TP^{\frac{1}{2}})); \) a appropriately designed parameter \(\mu >(\lambda _{\textrm{max}}(P)+\lambda _{\textrm{max}}(P^{\frac{1}{2}}BB^TP^{\frac{1}{2}}))/P^{-\frac{1}{2}}QP^{-\frac{1}{2}}\) comes from the Young’s inequality \(ab\le \frac{a^2}{2\mu }+\frac{\mu b^2}{2}\), used to the terms \(2zB^TP\bar{x}^T\) and \(2\bar{x}P\omega ^T\). By integrating both sides of Eq. (45), it yields \(V(t)\le e^{-\lambda t}V(0)+\eta /\lambda \), which means that \(|x_i|\le \sqrt{(V(0)+\eta /\lambda )/\lambda _{\textrm{min}}(P)}, i=4 \ldots 7\). This completes the proof of lemma 4. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, S., Zhao, D. et al. Approximation-free output feedback control for hydraulic active suspensions with prescribed performance. Nonlinear Dyn 111, 21673–21689 (2023). https://doi.org/10.1007/s11071-023-08959-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08959-w

Keywords

Navigation