Skip to main content
Log in

Data-driven model order reduction for structures with piecewise linear nonlinearity using dynamic mode decomposition

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piecewise-linear nonlinear systems appear in many engineering disciplines. Prediction of the dynamic behavior of such systems is of great importance from practical and theoretical viewpoints. In this paper, a data-driven model order reduction method for piecewise-linear systems is proposed, which is based on dynamic mode decomposition (DMD). The overview of the concept of DMD is provided, and its application to model order reduction for nonlinear systems based on Galerkin projection is explained. The proposed approach uses impulse responses of the system to obtain snapshots of the state variables. The snapshots are then used to extract the dynamic modes that are used to form the projection basis vectors. The dynamics described by the equations of motion of the original full-order system are then projected onto the subspace spanned by the basis vectors. This produces a system with much smaller number of degrees of freedom (DOFs). The proposed method is applied to two representative examples of piecewise linear systems: a cantilevered beam subjected to an elastic stop at its end, and a bonded plates assembly with partial debonding. The reduced order models (ROMs) of these systems are constructed by using the Galerkin projection of the equation of motion with DMD modes alone, or DMD modes with a set of classical constraint modes to be able to handle the contact nonlinearity efficiently. The obtained ROMs are used for the nonlinear forced response analysis of the systems under harmonic loading. It is shown that the ROMs constructed by the proposed method produce accurate forced response results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The dataset generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Saito, A., Castanier, M.P., Pierre, C.: Estimation and veering analysis of nonlinear resonant frequencies of cracked plates. J. Sound Vib. 326(3–5), 725–739 (2009)

    Article  Google Scholar 

  2. Casini, P., Vestroni, F.: Characterization of bifurcating non-linear normal modes in piecewise linear mechanical systems. Int. J. Non-Linear Mech. 46(1), 142–150 (2011)

    Article  Google Scholar 

  3. AL-Shudeifat, M.A., Butcher, E.A.: On the dynamics of a beam with switching crack and damaged boundaries. J. Vib. Control 19(1), 30–46 (2013)

    Article  Google Scholar 

  4. Burlayenko, V.N., Sadowski, T.: Finite element nonlinear dynamic analysis of sandwich plates with partially detached facesheet and core. Finite Elements Anal. Des. 62, 49–64 (2012)

    Article  MathSciNet  Google Scholar 

  5. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Saito, A.: Nonlinear resonances of chains of thin elastic beams with intermittent contact. J. Comput. Nonlinear Dyn. 13(8), 081005 (2018)

    Article  Google Scholar 

  7. Noguchi, K., Saito, A., Tien, M.H., D’Souza, K.: Bilinear systems with initial gaps involving inelastic collision: forced response experiments and simulations. J. Vib. Acoust. 144(2), 021001 (2022)

    Article  Google Scholar 

  8. Masri, S.F., Miller, R.K., Sassi, H., Caughey, T.K.: A method for reducing the order of nonlinear dynamic systems. J. Appl. Mech. 51(2), 391–398 (1984)

    Article  MATH  Google Scholar 

  9. Masri, S.F., Caffrey, J.P., Caughey, T.K., Smyth, A.W., Chassiakos, A.G.: A general data-based approach for developing reduced-order models of nonlinear MDOF systems. Nonlinear Dyn. 39(1), 95–112 (2005)

    Article  MATH  Google Scholar 

  10. Jiang, D., Pierre, C., Shaw, S.W.: Large-amplitude non-linear normal modes of piecewise linear systems. J. Sound Vib. 272(3–5), 869–891 (2004)

    Article  MathSciNet  Google Scholar 

  11. Tien, M.-H., D’Souza, K.: A generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestress. Nonlinear Dyn. 88(4), 2403–2416 (2017)

    Article  Google Scholar 

  12. Tien, M.-H., D’Souza, K.: Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC. Nonlinear Dyn. 96(2), 1115–1131 (2019)

    Article  Google Scholar 

  13. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99(2), 1709–1761 (2020)

    Article  MATH  Google Scholar 

  14. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jourdain, G., Eriksson, L.E., Kim, S.H., Sohn, C.H.: Application of dynamic mode decomposition to acoustic-modes identification and damping in a 3-dimensional chamber with baffled injectors. J. Sound Vib. 332(18), 4308–4323 (2013)

    Article  Google Scholar 

  16. Bistrian, D.A., Navon, I.M.: The method of dynamic mode decomposition in shallow water and a swirling flow problem. Int. J. Numer. Methods Fluids 83(1), 73–89 (2017)

    Article  MathSciNet  Google Scholar 

  17. Richecoeur, F., Hakim, L., Renaud, A., Zimmer, L.: DMD algorithms for experimental data processing in combustion. In: Proceeding of the 2012 Summer Program. Center for Turbulence Research, pp. 459–468, Stanford University, (2012)

  18. Ali, M.Y., Pandey, A., Gregory, J.W.: Dynamic mode decomposition of fast pressure sensitive paint data. Sensors 16(6), 862 (2016)

    Article  Google Scholar 

  19. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  20. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dyn. 41(1), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  22. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput. 39(5), B778–B796 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khan, R., Kwong, T.N.: DMD-Galerkin model order reduction for cardiac propagation modeling. ACES J. 33(10), 1096–1099 (2018)

    Google Scholar 

  24. Cunha, B., Droz, C., Zine, A., Foulard, S., Ichchou, M.: A review of machine learning methods applied to structural dynamics and vibroacoustic. Mech. Syst. Signal Process. 200, 110535 (2022)

    Article  Google Scholar 

  25. Simha, C.H.M., Biglarbegian, M.: A note on the use of dynamic mode decomposition in mechanics. Mech. Res. Commun. 120, 103848 (2022)

    Article  Google Scholar 

  26. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J Comput. Dyn. 1(2), 391–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tu, J.H.: Dynamic mode decomposition: theory and applications. PhD thesis, Princeton University (2013)

  28. Saito, A., Kuno, T.: Data-driven experimental modal analysis by dynamic mode decomposition. J. Sound Vib. 481, 115434 (2020)

    Article  Google Scholar 

  29. Thite, A.N., Thompson, D.J.: The quantification of structure-borne transmission paths by inverse methods. Part 1: improved singular value rejection methods. J. Sound Vib. 264, 411–431 (2003)

  30. Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The polymax frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11(3–4), 395–409 (2004)

    Article  Google Scholar 

  31. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  32. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Adaptive symplectic model order reduction of parametric particle-based Vlasov–Poisson equation. Math. Comput. (2022). https://doi.org/10.1090/mcom/3885

    Article  MATH  Google Scholar 

  34. Fritzen, F., Haasdonk, B., Ryckelynck, D., Schöps, S.: An algorithmic comparison of the hyper-reduction and the discrete empirical interpolation method for a nonlinear thermal problem. Math. Comput. Appl. 23(1), 8 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Wiley, New York (2009)

    Google Scholar 

  36. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  37. Lee, P.-S., Bathe, K.-J.: Development of MITC isotropic triangular shell finite elements. Comput. Struct. 82(11), 945–962 (2004)

    Article  Google Scholar 

Download references

Funding

This project was supported in part by Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research(C), grant number JP20K11855.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception, design and analysis. Simulations were implemented and performed mainly by A. Saito. The first draft of the manuscript was written by A. Saito and M. Tanaka commented on the draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akira Saito.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, A., Tanaka, M. Data-driven model order reduction for structures with piecewise linear nonlinearity using dynamic mode decomposition. Nonlinear Dyn 111, 20597–20616 (2023). https://doi.org/10.1007/s11071-023-08958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08958-x

Keywords

Navigation