Skip to main content
Log in

Optimal control and parameter identification of a reaction–diffusion network propagation model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the era of rapid development of the network, information security is a topic worthy of attention. This paper establishes a reaction–diffusion rumor propagation model with secondary transmission mechanism. We derive the necessary conditions for its Turing instability and then obtain that an increase in media refutation rate \(\gamma \) can effectively suppress rumors through sensitivity analysis. By converting the parameter \(\gamma \) to \(\gamma \left( \textbf{x},t\right) \) and using the Projected Gradient Method, rumors are controlled as the target propagation mode. By applying the method of optimal control, the parameter identification of the system is achieved through three algorithms. The Projected Gradient Method can effectively identify the patterns of two unknown parameters and has global convergence, but the convergence speed is relatively slow. The Barzilar-Borwein method and the BFGS Quasi-Newton Algorithm can effectively improve the convergence speed while ensuring the reliability of the results. The Barzilar-Borwein method is used to effectively identify six parameters of the system, with a relative error of only 0.3030\(\%\). Finally, by changing the parameter \(\gamma \) to a spatial heterogeneity parameter \(\gamma \left( \textbf{x}\right) \), we have achieved the reproduction of natural biological surface patterns through the Projected Gradient Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1:
Algorithm 2:
Algorithm 3:
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Hu, Y.H., Pan, Q.H., Hou, W.B., He, M.F.: Rumor spreading model with the different attitudes towards rumors. Phys. A 502, 331–344 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, C.R., Ma, Z.J.: Dynamics analysis and optimal control for a delayed rumor-spreading model. Mathematics 10, 3455 (2022)

    Article  Google Scholar 

  3. Pan, W.Q., Yan, W.J., Hu, Y.H., He, R.M., Wu, L.B.: Dynamic analysis of a SIDRW rumor propagation model considering the effect of media reports and rumor refuters. Nonlinear Dyn. 111, 3925–3936 (2023)

    Article  Google Scholar 

  4. Wang, J.L., Jiang, H.J., Ma, T.L.: C, Hu, Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism. Chaos, Solitons Fractals 126, 148–157 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, J.L., Jiang, H.J., Yu, Z.Y., Hu, C.: Dynamical analysis of rumor spreading model in homogeneous complex networks. Appl. Math. Comput. 359, 374–385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhu, L.H., Zhao, H.Y., Wang, H.Y.: Partial differential equation modeling of rumor propagation in complex networks with higher order of organization. Chaos 29, 053106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia, Y., Jiang, H.J., Yu, Z.Y., Yu, S.Z., Luo, X.P.: Dynamic analysis and optimal control of a reaction-diffusion rumor propagation model in multi-lingual environments. J. Math. Anal. Appl. 521, 126967 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, L., Zhu, L.H., Zhang, Z.D.: Turing instability induced by complex networks in a reaction-diffusion information propagation model. Inf. Sci. 578, 762–794 (2021)

    Article  MathSciNet  Google Scholar 

  9. Hu, J.L., Zhu, L.H.: Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments. Chaos, Solitons Fractals 153, 111542 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, X.R., Shen, S.L., Zhu, L.H.: Complex dynamic analysis of a reaction-diffusion network information propagation model with non-smooth control. Inf. Sci. 622, 1141–1161 (2023)

    Article  Google Scholar 

  11. Hu, J.L., Zhu, L.H., Peng, M.: Analysis of Turing patterns and amplitude equations in general forms under a reaction-diffusion rumor propagation system with Allee effect and time delay. Inf. Sci. 596, 501–519 (2022)

    Article  Google Scholar 

  12. Zhao, H.Y., Zhu, L.H.: Dynamic analysis of a reaction-diffusion rumor propagation model. Int. J. Bifurc. Chaos 26, 1650101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, L.H., Wang, X.W., Zhang, Z.D., Lei, C.X.: Spatial dynamics and optimization method for a rumor propagation model in both homogeneous and heterogeneous environment. Nonlinear Dyn. 105, 3791–3817 (2021)

    Article  Google Scholar 

  14. Zhu, L.H., He, L.: Pattern formation in a reaction-diffusion rumor propagation system with Allee effect and time delay. Nonlinear Dyn. 107, 3041–3063 (2022)

    Article  Google Scholar 

  15. Cheng, Y.Y., Huo, L.A., Zhao, L.J.: Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination. Chaos, Solitons Fractals 157, 111931 (2022)

  16. Ding, L., Hu, P., Guan, Z.H., Li, T.: An efficient hybrid control strategy for restraining rumor spreading. IEEE Trans. Syst. Man, Cybern. Syst. 51, 6779–6791 (2021)

    Article  Google Scholar 

  17. Chen, J., Yang, L.X., Yang, X.F., Tang, Y.Y.: Cost-effective anti-rumor message-pushing schemes. Phys. A 540, 123085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, Y.Y., Huo, L.A., Zhao, L.J.: Dynamical behaviors and control measures of rumor-spreading model in consideration of the infected media and time delay. Inf. Sci. 564, 237–253 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kandhway, K., Kuri, J.: Optimal control of information epidemics modeled as Maki Thompson rumors. Commun. Nonlinear Sci. Numer. Simul. 19, 4135–4147 (2014)

    Article  MATH  Google Scholar 

  20. Yu, Y., Liu, J.M., Ren, J.D., Wang, Q., Xiao, C.Y.: Minimize the impact of rumors by optimizing the control of comments on the complex network. AIMS Math. 6, 6140–6159 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, L.H., Huang, X.Y., Liu, Y., Zhang, Z.D.: Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion propagation model. J. Math. Anal. Appl. 493, 124539 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chang, L.L., Gong, W., Jin, Z., Sun, G.Q.: Sparse optimal control of pattern formations for an SIR reaction-diffusion epidemic model. SIAM J. Appl. Math. 82, 1764–1790 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, L.L., Gao, S.P., Wang, Z.: Optimal control of pattern formations for an SIR reaction-diffusion epidemic model. J. Theor. Biol. 536, 111003 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, L.H., He, L.: Pattern dynamics analysis and parameter identification of time delay-driven rumor propagation model based on complex networks. Nonlinear Dyn. 110, 1935–1957 (2022)

    Article  Google Scholar 

  25. Abram, M., Burghard, K., Steeg, G.V., Galstyan, A., Dingreville, R.: Inferring topological transitions in pattern-forming processes with self-supervised learning. NPJ Comput. Mater. 8, 205 (2022)

    Article  Google Scholar 

  26. Zhu, L.H., He, L.: Two different approaches for parameter identification in a spatial-temporal rumor propagation model based on Turing patterns. Commun. Nonlinear Sci. Numer. Simul. 107, 106174 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Garvie, M.R., Trenchea, C.: Optimal control of a nutrient-phytoplankton- zooplankton-fish system. SIAM J. Control. Optim. 46, 775–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garvie, M.R., Trenchea, C.: Identification of space-time distributed parameters in the Gierer-Meinhardt reaction-diffusion system. SIAM J. Appl. Math. 74, 147–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Garvie, M.R., Maini, P.K., Trenchea, C.: An efficient and robust numerical algorithm for estimating parameters in Turing systems. J. Comput. Phys. 229, 7058–7071 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods and applications. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  31. Reyes, D.L., Carlos, J.: Numerical PDE-constrained optimization. Springer International Publishing, UK (2015)

    Book  MATH  Google Scholar 

  32. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

  33. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer International Publishing (1999)

  34. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 6, 76–90 (1970)

    Article  MATH  Google Scholar 

  35. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goldfarb, D., Shanno, D.: Convex programming in Hilbert space. Math. Oper. Res. 4, 381–404 (1970)

    Google Scholar 

  37. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 12002135), China Postdoctoral Science Foundation (Grant No. 2023M731382), Young Science and Technology Talents Lifting Project of Jiangsu Association for Science and Technology, College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2022102991033X), and Scientific Research Project of Jiangsu University (Grant No. 21A304).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LZ helped in conceptualization, formal analysis, and writing—original draft. TY was involved in data curation and writing—original draft.

Corresponding author

Correspondence to Linhe Zhu.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Yuan, T. Optimal control and parameter identification of a reaction–diffusion network propagation model. Nonlinear Dyn 111, 21707–21733 (2023). https://doi.org/10.1007/s11071-023-08949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08949-y

Keywords

Navigation