Skip to main content
Log in

Dynamic and steady-state performance analysis of a linear solenoid parallel elastic actuator with nonlinear stiffness

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The peak time, overshoot and steady-state displacement are taken as the performance indicators to predict and adjust the steady-state and dynamic performance of a large-stroke, high-speed linear solenoid parallel elastic actuator (LSPEA) with nonlinear stiffness in the process of the overshoot, damped oscillation and stabilization. The analytical, numerical and finite element methods are used to obtain those indicators under different stiffness and damping. First, the analytical functions of the electromagnetic force and the magnetic field distribution are presented. The nonlinear vibration equation is obtained by dynamic modeling. The averaging method and the KBM method are employed to obtain analytical results of the nonlinear undamped vibration equation. The equivalent linearization of the damped nonlinear system is performed to obtain the approximate analytical results of the performance indicators including equivalent stiffness, damping ratio, and damping frequency. Second, the approximate analytical model and numerical model are constructed with the Simulink software to solve the nonlinear equation. ANSYS Maxwell and Adams software are adopted for the transient analysis of the LSPEA. The displacement curves and performance indicators obtained by the analytical model, numerical model, finite element and experiment are compared. The maximum errors of the peak time, overshoot and steady displacement through the analytical model and experiment are 4.54 ms, 8.84% and 0.44 mm, respectively. The maximum errors through the numerical model and experiment are 5.04 ms, 8.57% and 0.42 mm, respectively. The established analytical and numerical models can be used to determine the static and dynamic performance of the LSEA within a certain error, which is helpful for the solution of nonlinear systems caused by multi-physics coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The numerical and experimental datasets generated and analyzed in the current study are available from the corresponding author on a reasonable request.

References

  1. Ijaz, S., Li, H., Hoang, M.C., Kim, C.S., Bang, D., Choi, E., Park, J.O.: Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer. Sens. Actuator A Phys. 301, 111707 (2020)

    Google Scholar 

  2. Yang, Z., Zhang, L.: Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2(9), 2000082 (2020)

    Google Scholar 

  3. Wang, H., York, P., Chen, Y., Russo, S., Ranzani, T., Walsh, C., Wood, R.J.: Biologically inspired electrostatic artificial muscles for insect-sized robots. Int. J. Rob. Res. 40(6–7), 895–922 (2021)

    Google Scholar 

  4. Ng, C.S.X., Tan, M.W.M., Xu, C., Yang, Z., Lee, P.S., Lum, G.Z.: Locomotion of miniature soft robots. Adv. Mater. 33(19), 2003558 (2021)

    Google Scholar 

  5. Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., Dong, S.: Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020)

    Google Scholar 

  6. Hasan, M.M., Baxevanis, T.: Structural fatigue and fracture of shape memory alloy actuators: current status and perspectives. J. Intell. Mater. Syst. Struct. 33(12), 1475–1486 (2022)

    Google Scholar 

  7. Bar-Cohen, Y., Anderson, I.A.: Electroactive polymer (EAP) actuators—background review. Mech. Soft Mater. 1(1), 1–14 (2019)

    Google Scholar 

  8. Wang, C., Zhang, W., Zou, Y., Meng, R., Zhao, J., Wei, M.: A sub-100 mg electromagnetically driven insect-inspired flapping-wing micro robot capable of liftoff and control torques modulation. J. Bionic Eng. 17(6), 1085–1095 (2020)

    Google Scholar 

  9. Liu, X., Liu, Z., Qi, M., Zhu, Y., Huang, D., Zhang, X., Lin, L., Yan, X.: A fast-moving micro crawling robot with direct electromagnetic driving mechanism. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 6–9. IEEE (2019)

  10. Sabzehmeidani, Y., Mailah, M., Hing, T.H., Abdelmaksoud, S.I.: A novel voice-coil actuated mini crawler for In-pipe application employing active force control with iterative learning algorithm. IEEE Access 9, 28156–28166 (2021)

    Google Scholar 

  11. Zhang, R., Shen, Z., Wang, Z.: Ostraciiform underwater robot with segmented caudal fin. IEEE Robot. Autom. 3(4), 2902–2909 (2018)

    Google Scholar 

  12. Song, C.W., Lee, D.J., Lee, S.Y.: Bioinspired segment robot with earthworm-like plane locomotion. J. Bionic Eng. 13(2), 292–302 (2016)

    Google Scholar 

  13. McIvor, B., Chahl, J.: Energy efficiency of linear electromagnetic actuators for flapping wing micro aerial vehicles. Energies 13(5), 1075 (2020)

    Google Scholar 

  14. Bhushan, P., Tomlin, C.: An insect-scale self-sufficient rolling microrobot. IEEE Robot. Autom. 5(1), 167–172 (2019)

    Google Scholar 

  15. Bhushan, P., Tomlin, C.: Design of an electromagnetic actuator for an insect-scale spinning-wing robot. IEEE Robot. Autom. 5(3), 4188–4193 (2020)

    Google Scholar 

  16. Zou, Y., Zhang, W., Zhang, Z.: Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans. Rob. 32(5), 1285–1289 (2016)

    Google Scholar 

  17. Liu, Z., Yan, X., Qi, M., Yang, Y., Zhang, X., Lin, L.: Lateral moving of an artificial flapping-wing insect driven by low voltage electromagnetic actuator. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 777–780. IEEE (2017)

  18. Bhushan, P., Tomlin, C. J.: Milligram-scale micro aerial vehicle design for low-voltage operation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

  19. Sayed, M.E., Roberts, J.O., McKenzie, R.M., Aracri, S., Buchoux, A., Stokes, A.A.: Limpet II: a modular, untethered soft robot. Soft Robot. 8(3), 319–339 (2021)

    Google Scholar 

  20. McKenzie, R.M., Sayed, M.E., Nemitz, M.P., Flynn, B.W., Stokes, A.A.: Linbots: soft modular robots utilizing voice coils. Soft Robot. 6(2), 195–205 (2019)

    Google Scholar 

  21. Ebrahimi, N., Schimpf, P., Jafari, A.: Design optimization of a solenoid-based electromagnetic soft actuator with permanent magnet core. Sens. Actuator A Phys. 284, 276–285 (2018)

    Google Scholar 

  22. Ebrahimi, N., Guda, T., Alamaniotis, M., Miserlis, D., Jafari, A.: Design optimization of a novel networked electromagnetic soft actuators system based on branch and bound algorithm. IEEE Access 8, 119324–119335 (2020)

    Google Scholar 

  23. Song, C.W., Lee, S.Y.: Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. Appl. Sci. 5(3), 595–607 (2015)

    Google Scholar 

  24. Xiao, X., Li, Y.: Development of an electromagnetic actuated microdisplacement module. IEEE ASME Trans. Mechatron. 21(3), 1252–1261 (2015)

    Google Scholar 

  25. Zhang, J., Yang, K., Li, R.: A bistable nonlinear electromagnetic actuator with elastic boundary for actuation performance improvement. Nonlinear Dyn. 100, 3575–3596 (2020)

    Google Scholar 

  26. Lu, H., Zhu, J., Lin, Z., Guo, Y.: An inchworm mobile robot using electromagnetic linear actuator. Mechatronics 19(7), 1116–1125 (2009)

    Google Scholar 

  27. Fang, J., Wang, X., Wu, J., Yang, S., Li, L., Gao, X., Tian, Y.: Modeling and control of a high speed on/off valve actuator. Int. J. Automot. Technol. 20(6), 1221–1236 (2019)

    Google Scholar 

  28. Gajek, J., Awrejcewicz, J.: Mathematical models and nonlinear dynamics of a linear electromagnetic motor. Nonlinear Dyn. 94(1), 377–396 (2018)

    Google Scholar 

  29. Zhang, J., Liu, Y., Zhu, D., Prasad, S., Liu, C.: Simulation and experimental studies of a vibro-impact capsule system driven by an external magnetic field. Nonlinear Dyn. 109(3), 1501–1516 (2022)

    Google Scholar 

  30. Qin, Y., Sun, W., Zuo, P., Yeow, J.T.: Modeling and closed loop control of a polymer composite-based hard-magnetic micromirror for optical switching applications. Nonlinear Dyn. 92(1), 59–74 (2018)

    Google Scholar 

  31. Zuo, S., Zhou, D., Hu, K.: Nonlinear modeling and verification of an electromagnetic actuator with consideration of friction. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 234(6), 1759–1769 (2020)

    Google Scholar 

  32. Gu, G.Y., Li, Z., Zhu, L.M., Su, C.Y.: A comprehensive dynamic modeling approach for giant magnetostrictive material actuators. Smart Mater. Struct. 22(12), 125005 (2013)

    Google Scholar 

  33. Yuan, X.J., Ling, H.T., Chen, J.J., Feng, Y., Qiu, T.Y., Zhao, R.C.: A dynamic modelling method for an electro-hydraulic proportional valve combining multi-systems and moving meshes. J. Braz. Soc. Mech. Sci. Eng. 44(7), 1–13 (2022)

    Google Scholar 

  34. Hogan, P. H., Van de Ven, J. D.: Dynamic modeling of a linear electromagnetic piston pump. In: ASME/BATH 2017 Symposium on Fluid Power and Motion Control, 58332, V001T01A062 (2017)

  35. Ortega, A., Ahuett-Garza, H.: Dynamic modeling and analysis of hinged compliant beam mechanisms for pulse-activated bistable actuators. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 229(3), 291–303 (2015)

    Google Scholar 

  36. Dal Borgo, M., Tehrani, M.G., Elliott, S.J.: Identification and analysis of nonlinear dynamics of inertial actuators. Mech. Syst. Signal Process. 115, 338–360 (2019)

    Google Scholar 

  37. Hao, Z., Wang, D., Wiercigroch, M.: Nonlinear dynamics of new magneto-mechanical oscillator. Commun. Nonlinear Sci. Numer. Simul. 105, 106092 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Anjum, N., He, J.H.: Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions. Alex. Eng. J. 59(6), 4343–4352 (2020)

    Google Scholar 

  39. Zhang, B., Zhang, Q., Wang, W., Han, J., Tang, X., Gu, F., Ball, A.D.: Dynamic modeling and structural optimization of a bistable electromagnetic vibration energy harvester. Energies 12(12), 2410 (2019)

    Google Scholar 

  40. Herisanu, N., Marinca, B., Marinca, V.: Dynamics of the vibro-impact nonlinear damped and forced oscillator under the influence of the electromagnetic actuation. Mathematics 10(18), 3301 (2022)

    Google Scholar 

  41. Kitio Kwuimy, C.A., Nataraj, C.: Modeling and dynamic analysis of a magnetically actuated butterfly valve. Nonlinear Dyn. 70(1), 435–451 (2012)

    MathSciNet  Google Scholar 

  42. Ho, J.H., Woo, K.C.: Approximate analytical solution to oscillations of a conductor in a magnetic field. Nonlinear Dyn. 64(4), 315–330 (2011)

    Google Scholar 

  43. Sun, W.P., Lim, C.W., Wu, B.S., Wang, C.: Analytical approximate solutions to oscillation of a current-carrying wire in a magnetic field. Nonlinear Anal. Real World Appl. 10(3), 1882–1890 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Wang, C., Lu, S., Zhang, C., Gao, J., Zhang, B., Wang, S.: Design and dynamic modeling of a 3-RPS compliant parallel robot driven by voice coil actuators. Micromachines 12(12), 1442 (2021)

    Google Scholar 

  45. Zhao, Y., Yu, J., Wang, H., Chen, G., Lai, X.: Design of an electromagnetic prismatic joint with variable stiffness. Ind. Robot. 44(2), 222–230 (2017)

    Google Scholar 

  46. Marignetti, F., Volpe, G., Mirimani, S.M., Cecati, C.: Electromagnetic design and modeling of a two-phase axial-flux printed circuit board motor. IEEE Trans. Ind. Electron. 65(1), 67–76 (2017)

    Google Scholar 

  47. Cristofolini, T., Dalmina, M., Sierra, J.A., Silva, A.H., Pasa, A.A., Pittella, F., Creczynski-Pasa, T.B.: Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Mater. Sci. Eng. C-Mater. 109, 110555 (2020)

    Google Scholar 

  48. Aslanov, V.S.: Stability of a pendulum with a moving mass: the averaging method. J. Sound Vib. 445, 261–269 (2019)

    Google Scholar 

  49. Alhejaili, W., Salas, A.H., El-Tantawy, S.A.: Approximate solution to a generalized Van der Pol equation arising in plasma oscillations. AIP Adv. 12(10), 105104 (2022)

    Google Scholar 

Download references

Funding

This project is supported by the Program of National Natural Science Foundation of China (Grant No.51805298), Natural Science Foundation of Shandong Province (ZR2022ME084), Young Scholars Program of Shandong University, Weihai.

Author information

Authors and Affiliations

Authors

Contributions

SL and CW designed and performed the experiments; AL and YL analyzed the data; GG and JG contributed the materials/analysis/tools; CW, ZC and XL wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jun Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \left\{ \begin{aligned} x_{1} = \frac{1}{{w_{0}^{2} }}\left( {\frac{{3A_{2} a^{2} }}{2} + \frac{{5A_{3} a^{3} }}{2} + \frac{{35A_{4} a^{4} }}{8}} \right) - \frac{1}{{3w_{0}^{2} }}\left( {\frac{{A_{2} a^{2} }}{2} + \frac{{3A_{3} a^{3} }}{2} + \frac{{7A_{4} a^{4} }}{2}} \right)\cos 2\psi + \hfill \\ \quad \quad \frac{1}{{8w_{0}^{2} }}\left( {\frac{{A_{3} a^{3} }}{4} + \frac{{A_{4} a^{4} }}{2}} \right)\cos 3\psi - \frac{{A_{4} a^{4} }}{{120w_{0}^{2} }}\cos 4\psi \hfill \\ w_{1} = - \frac{1}{{2aw_{0} }}\left( {2A_{2} {{a}}^{2} + \frac{15}{4}A_{3} {{a}}^{3} + 7A_{4} {{a}}^{4} } \right) \hfill \\ a_{1} = 0 \hfill \\ \end{aligned} \right. $$
(38)
$$ \left\{ \begin{aligned} x_{2} = \frac{1}{{w_{0}^{4} }}\left( {3A_{2}^{2} a^{3} + \frac{{93A_{2} A_{3} a^{4} }}{8} + \frac{{87A_{3}^{2} a^{5} }}{8} + \frac{{93A_{2} A_{4} a^{5} }}{4} + \frac{{2707A_{3} A_{4} a^{6} }}{64} + \frac{{643A_{4}^{2} a^{7} }}{16}} \right) \hfill \\ - \frac{\cos 2\psi }{{3w_{0}^{4} }}\left[ \begin{aligned} - \frac{{A_{2}^{2} a^{3} }}{3} + \frac{{15A_{2} A_{3} a^{4} }}{32} + \frac{{45A_{3}^{2} a^{5} }}{32} + \frac{{39A_{2} A_{4} a^{5} }}{8} + \frac{{3423A_{3} A_{4} a^{6} }}{32} + \hfill \\ \frac{{3269A_{4}^{2} a^{7} }}{240} + \frac{4}{3}\left( {2A_{2} {{a + }}\frac{{15A_{3} {{a}}^{2} }}{4} + 7A_{4} a^{3} } \right)\left( {\frac{{A_{2} {{a}}^{2} }}{2} + \frac{{3A_{3} {{a}}^{3} }}{2} + \frac{{7A_{4} {{a}}^{4} }}{2}} \right) \hfill \\ \end{aligned} \right] \hfill \\ - \frac{\cos 3\psi }{{8w_{0}^{4} }}\left[ \begin{aligned} \frac{{A_{2}^{2} a^{3} }}{6} + \frac{{17A_{2} A_{3} a^{4} }}{16} + \frac{{105A_{3}^{2} a^{5} }}{64} + \frac{{47A_{2} A_{4} a^{5} }}{40} + \frac{{113A_{3} A_{4} a^{6} }}{20} + \hfill \\ \frac{{91A_{4}^{2} a^{7} }}{16} + \frac{9}{8}\left( {2A_{2} {{a + }}\frac{{15A_{3} {{a}}^{2} }}{4} + 7A_{4} a^{3} } \right)\left( {\frac{{A_{3} {{a}}^{3} }}{4} + A_{4} {{a}}^{4} } \right) \hfill \\ \end{aligned} \right] \hfill \\ + \frac{\cos 4\psi }{{15w_{0}^{4} }}\left[ \begin{aligned} \frac{{5A_{2} A_{3} a^{4} }}{32} + \frac{{15A_{3}^{2} a^{5} }}{32} + \frac{{77A_{2} A_{4} a^{5} }}{120} + \frac{{967A_{3} A_{4} a^{6} }}{320} + \hfill \\ \frac{{217A_{4}^{2} a^{7} }}{48} - \frac{{2A_{4} {{a}}^{4} }}{15}\left( {2A_{2} {{a + }}\frac{{15A_{3} {{a}}^{2} }}{4} + 7A_{4} a^{3} } \right) \hfill \\ \end{aligned} \right] \hfill \\ - \frac{\cos 5\psi }{{24w_{0}^{4} }}\left( {\frac{{3A_{3}^{2} a^{5} }}{128} + \frac{{11A_{2} A_{4} a^{5} }}{120} + \frac{{37A_{3} A_{4} a^{6} }}{80} + \frac{{49A_{4}^{2} a^{7} }}{48}} \right) \hfill \\ + \frac{\cos 6\psi }{{35w_{0}^{4} }}\left( {\frac{{7A_{3} A_{4} a^{6} }}{320} + \frac{{7A_{4}^{2} a^{7} }}{80}} \right) - \frac{{A_{4}^{2} a^{7} \cos 7\psi }}{{11520w_{0}^{4} }} \hfill \\ w_{2} = - \frac{1}{{2aw_{0} }}\left( \begin{aligned} \frac{{17A_{2}^{2} a^{3} }}{{6w_{0}^{2} }} + \frac{{13A_{2} A_{3} a^{4} }}{{w_{0}^{2} }} + \frac{{1725A_{3}^{2} a^{5} }}{{128w_{0}^{2} }} + \frac{{115A_{2} A_{4} a^{5} }}{{4w_{0}^{2} }} + \hfill \\ \frac{{897A_{3} A_{4} a^{6} }}{{16w_{0}^{2} }} + \frac{{4473A_{4}^{2} a^{7} }}{{80w_{0}^{2} }} + aw_{1}^{2} \hfill \\ \end{aligned} \right) \hfill \\ a_{2} = 0 \hfill \\ \end{aligned} \right. $$
(39)

Appendix B

See Table 4.

Table 4 Comparison of dynamic indicators under different stiffness and damping

Appendix C

See Figs.

Fig. 17
figure 17

Five groups of transient curves of Actuator #2 under the voltage of 0.8–2.2 V

17 and

Fig. 18
figure 18

Five groups of transient curves of Actuator #3 under the voltage of 2–6 V

18.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Wang, C., Luo, A. et al. Dynamic and steady-state performance analysis of a linear solenoid parallel elastic actuator with nonlinear stiffness. Nonlinear Dyn 111, 21507–21534 (2023). https://doi.org/10.1007/s11071-023-08947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08947-0

Keywords

Navigation