Skip to main content
Log in

Sloshing reduced-order model trained with Smoothed Particle Hydrodynamics simulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main goal of this paper is to provide a Reduced Order Model (ROM) able to predict the liquid induced dissipation of the violent and vertical sloshing problem for a wide range of liquid viscosities, surface tensions and tank filling levels. For that purpose, the Delta Smoothed Particle Hydrodynamics (\(\delta \)-SPH) formulation is used to build a database of simulation cases where the physical parameters of the liquid are varied. For each simulation case, a bouncing ball-based equivalent mechanical model is identified to emulate sloshing dynamics. Then, an interpolating hypersurface-based ROM is defined to establish a mapping between the considered physical parameters of the liquid and the identified ball models. The resulting hypersurface effectively estimates the bouncing ball design parameters while considering various types of liquids, producing results consistent with SPH test simulations. Additionally, it is observed that the estimated bouncing ball model not only matches the liquid induced dissipation but also follows the liquid center of mass and presents the same sloshing force and phase-shift trends when varying the tank filling level. These findings provide compelling evidence that the identified ROM is a practical tool for accurately predicting critical aspects of the vertical sloshing problem while requiring minimal computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The experimental data used to validate the numerical tool can be found in http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/case_1/index.html. The SPH data can be downloaded in http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/Numerical_data/AQUAgpusph/. Videos of the SPH simulations and experiments can be downloaded at http://canal.etsin.upm.es/files/SLOWD/videos/. The 54 simulation points for the hypersurface identification and the ROM responses can be found in http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/ROM_data/SPH_BB/.

References

  1. Gambioli, F.: SLOshing Wing Dynamics. https://slowd-project.eu/ (2019)

  2. Gambioli, F., Chamos, A., Jones, S., Guthrie, P., Webb, J., Levenhagen, J., Behruzi, P., Mastroddi, F., Malan, A., Longshaw, S., et al.: Sloshing wing dynamics–project overview. In: Proceedings of 8th Transport Research Arena TRA 2020, Helsinki (2020)

  3. Martinez-Carrascal, J., Gonzalez, L.M.: On the experimental scaling and power dissipation of violent sloshing flows. J. Fluids Struct. 115, 103763 (2022)

    Google Scholar 

  4. Constantin, L., De Courcy, J., Titurus, B., Rendall, T., Cooper, J.: Analysis of damping from vertical sloshing in a SDOF system. Mech. Syst. Signal Process. 152, 107452 (2021)

    Google Scholar 

  5. Saltari, F., Pizzoli, M., Coppotelli, G., Gambioli, F., Cooper, J.E., Mastroddi, F.: Experimental characterisation of sloshing tank dissipative behaviour in vertical harmonic excitation. J. Fluids Struct. 109, 103478 (2022)

    Google Scholar 

  6. Calderon-Sanchez, J., Martinez-Carrascal, J., Gonzalez-Gutierrez, L., Colagrossi, A.: A global analysis of a coupled violent vertical sloshing problem using an SPH methodology. Eng. Appl. Comput. Fluid Mech. 15(1), 865–888 (2021)

    Google Scholar 

  7. Wright, M., Gambioli, F., Malan, A.: A non-dimensional characterization of structural vibration induced vertical slosh induced damping. In: The 31st International Ocean and Polar Engineering Conference, ISOPE-I-21-3211 (2021)

  8. Malan, L.C., Pilloton, C., Colagrossi, A., Malan, A.G.: Numerical calculation of slosh dissipation. Appl. Sci. 12(23), 12390 (2022)

    Google Scholar 

  9. Calderon-Sanchez, J., González, L.M., Marrone, S., Colagrossi, A., Gambioli, F.: A SPH simulation of the sloshing phenomenon inside fuel tanks of the aircraft wings. In: 14th International SPHERIC Workshop (2019)

  10. Marrone, S., Colagrossi, A., Calderon-Sanchez, J., Martinez-Carrascal, J.: Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. ii. Comparison against experimental data. Phys. Rev. Fluids 6(11), 114802 (2021)

    Google Scholar 

  11. Marrone, S., Colagrossi, A., Gambioli, F., González-Gutiérrez, L.: Numerical study on the dissipation mechanisms in sloshing flows induced by violent and high-frequency accelerations. i. Theoretical formulation and numerical investigation. Phys. Rev. Fluids 6(11), 114801 (2021)

    Google Scholar 

  12. Pizzoli, M., Saltari, F., Mastroddi, F., Martinez-Carrascal, J., González-Gutiérrez, L.M.: Nonlinear reduced-order model for vertical sloshing by employing neural networks. Nonlinear Dyn. (2021)

  13. Colella, M., Saltari, F., Pizzoli, M., Mastroddi, F.: Sloshing reduced-order models for aeroelastic analyses of innovative aircraft configurations. Aerosp. Sci. Technol. 118, 107075 (2021)

    Google Scholar 

  14. Saltari, F., Traini, A., Gambioli, F., Mastroddi, F.: A linearized reduced-order model approach for sloshing to be used for aerospace design. Aerosp. Sci. Technol. 108, 106369 (2021)

    Google Scholar 

  15. Saltari, F., Pizzoli, M., Gambioli, F., Jetzschmann, C., Mastroddi, F.: Sloshing reduced-order model based on neural networks for aeroelastic analyses. Aerosp. Sci. Technol. 127, 107708 (2022)

    Google Scholar 

  16. Lamb, H.: Hydrodynamics. Cambridge University Press (1932)

    MATH  Google Scholar 

  17. Faltinsen, O.M., Timokha, A.N.: Sloshing, vol. 577. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press (2005)

    MATH  Google Scholar 

  19. Gambioli, F., Usach, R.A., Wilson, T., Behruzi, P.: Experimental Evaluation of Fuel Sloshing Effects on wing dynamics. In: 18th Int. Forum Aeroelasticity Struct. Dyn. IFASD 2019 (2019)

  20. Titurus, B., Cooper, J.E., Saltari, F., Mastroddi, F., Gambioli, F.: Analysis of a sloshing beam experiment. In: International Forum Aeroelasticity and Structural Dynamics. Savanah (2019)

  21. Pagliaroli, T., Gambioli, F., Saltari, F., Cooper, J.: Proper orthogonal decomposition, dynamic mode decomposition, wavelet and cross wavelet analysis of a sloshing flow. J. Fluids Struct. 112, 103603 (2022)

    Google Scholar 

  22. Martinez-Carrascal, J., Gonzalez-Gutierrez, L.: Experimental study of the liquid damping effects on a SDOF vertical sloshing tank. J. Fluids Struct. 100, 103172 (2021)

    Google Scholar 

  23. Constantin, L., Courcy, J.J.D., Titurus, B., Rendall, T.C.S., Cooper, J.E.: Statistical analysis of sloshing-induced dissipative energy across a range of Froude numbers. In: IOP Conference Series: Materials Science and Engineering, vol. 1226 (2022)

  24. Gambioli, F., Malan, A.G.: Fuel loads in large civil airplanes. In: 17th Int. Forum Aeroelasticity Struct. Dyn. IFASD 2017, vol. 2017 (2017)

  25. Gimenez, J.M., González, L.M.: An extended validation of the last generation of particle finite element method for free surface flows. J. Comput. Phys. 284, 186–205 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Luo, M., Su, X., Lin, P., Khayyer, A., Zhao, X.: Investigation of two-layer liquid sloshing by using the consistent particle method. Int. J. Offshore Polar Eng. 32, 7–15, 03 (2022)

    Google Scholar 

  27. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)

    MATH  Google Scholar 

  28. Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodríguez, R., Botía-Vera, E.: A set of canonical problems in sloshing, Part I: pressure field in forced roll-comparison between experimental results and SPH. Ocean Eng. 36(2), 168–178 (2009)

    Google Scholar 

  29. Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., Shimosako, K.: On enhancement of incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46, 104–115 (2014)

    Google Scholar 

  30. Stasch, J., Avci, B., Wriggers, P.: Numerical simulation of fluid-structure interaction problems by a coupled SPH-FEM approach. Proc. Appl. Math. Mech. 16(1), 491–492 (2016)

    Google Scholar 

  31. Ren, Y., Khayyer, A., Lin, P., Hu, X.: Numerical modeling of sloshing flow interaction with an elastic baffle using SPHinXsys. Ocean Eng. 267, 113110 (2023)

    Google Scholar 

  32. Sun, L., Fujino, Y.: A semi-analytical model for tuned liquid dampers (TLD) with wave breaking. J. Fluids Struct. 8, 471–488 (1994)

    Google Scholar 

  33. Martinez-Carrascal, J., González-Gutiérrez, L.M., Calderon-Sanchez, J.: Experimental and numerical characterization of violent sloshing flows using a single degree of freedom approach. Appl. Sci. 12, 7897 (2022)

    Google Scholar 

  34. Marrone, S., Saltari, F., Michel, J., Mastroddi, F.: SPH modelling of dissipative sloshing flows under violent vertical harmonic excitation. J. Fluids Struct. 119, 103877 (2023)

    Google Scholar 

  35. Antuono, M., Colagrossi, A., Marrone, S.: Numerical diffusive terms in weakly-compressible SPH schemes. Comput. Phys. Commun. 183(12), 2570–2580 (2012)

    MathSciNet  MATH  Google Scholar 

  36. You, Y., Khayyer, A., Zheng, X., Gotoh, H., Ma, Q.: Enhancement of delta-SPH for ocean engineering applications through incorporation of a background mesh scheme. Appl. Ocean Res. 110, 102508 (2021)

    Google Scholar 

  37. Graham, E., Rodriquez, A.M.: The characteristics of fuel motion which affect airplane dynamics, Tech. Rep., Douglas Aircraft Co. Inc., Defense Technical Information Center (1951)

  38. Abramson, N., Bauer, H.F., Brooks, G.W., Chu, W.-H., Dalzell, J.F., Dodge, F.T., Kana, D.D., Reynolds, W.C., Satterlee, H.M., Silverman, S.: The Dynamic Behaviour of Liquids in Moving Containers (1966)

  39. Schotté, J.-S., Ohayon, R.: Various modelling levels to represent internal liquid behaviour in the vibration analysis of complex structures. Comput. Methods Appl. Mech. Eng. 198(21), 1913–1925 (2009)

    MATH  Google Scholar 

  40. Constantin, L., De Courcy, J.J., Titurus, B., Rendall, T.C.S., Cooper, J.E., Gambioli, F.: Effect of fuel sloshing on the damping of a scaled wing model—experimental testing and numerical simulations. Appl. Sci. 12(15) (2022)

  41. Pizzoli, M., Saltari, F., Coppotelli, G., Mastroddi, F.: Neural network-based reduced-order modeling for nonlinear vertical sloshing with experimental validation. Nonlinear Dyn. (2023)

  42. Monaghan, J.J., Pongracic, H.: Artificial viscosity for particle methods. Appl. Numer. Math. 1(3), 187–194 (1985)

    MATH  Google Scholar 

  43. Randles, P., Libersky, L.: Smoothed Particle Hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 39, 375–408 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Di Mascio, A., Antuono, M., Colagrossi, A., Marrone, S.: Smoothed particle hydrodynamics method from a large eddy simulation perspective. Phys. Fluids 29(3), 035102 (2017)

    Google Scholar 

  45. Sun, P., Colagrossi, A., Marrone, S., Antuono, M., Zhang, A.: Multi-resolution delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Comput. Phys. Commun. 224, 63–80 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Sun, P., Colagrossi, A., Marrone, S., Antuono, M., Zhang, A.-M.: A consistent approach to particle shifting in the \(\delta \)-plus-SPH model. Comput. Methods Appl. Mech. Eng. 348, 912–934 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Martinez-Carrascal, J., Calderon-Sanchez, J., González-Gutiérrez, L.M., de Andrea González, A.: Extended computation of the viscous Rayleigh-Taylor instability in a horizontally confined flow. Phys. Rev. E 103, 053114 (2021)

    MathSciNet  Google Scholar 

  48. Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Meth. Fluids 33(3), 333–353 (2000)

  49. Souto-Iglesias, A., Delorme, L., Pérez-Rojas, L., Abril-Pérez, S.: Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng. 33, 1462–1484 (2006)

    Google Scholar 

  50. Cercos-Pita, J.L.: Aquagpusph, a new free 3D SPH solver accelerated with OpenCL. Comput. Phys. Commun. 192, 295–312 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Calderon-Sanchez, J., Cercos-Pita, J., Duque, D.: A geometric formulation of the Shepard renormalization factor. Comput. Fluids 183, 16–27 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Michel, J., Vergnaud, A., Oger, G., Hermange, C., Le Touzé, D.: On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law. J. Comput. Phys. 459, 110999 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Vergnaud, A., Oger, G., Le Touzé, D., DeLeffe, M., Chiron, L.: C-CSF: accurate, robust and efficient surface tension and contact angle models for single-phase flows using SPH. Comput. Methods Appl. Mech. Eng. 389, 114292 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Chiron, L., De Leffe, M., Oger, G., Le Touzé, D.: Fast and accurate SPH modelling of 3-D complex wall boundaries in viscous and non viscous flows. Comput. Phys. Commun. 234, 93–111 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Cercos-Pita, J.L., Eleazar Merino-Alonso, P., Calderon-Sanchez, J., Duque, D.: The role of time integration in energy conservation in smoothed particle hydrodynamics fluid dynamics simulations. Eur. J. Mech. B Fluids 97, 78–92 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Khayyer, A., Shimizu, Y., Gotoh, T., Gotoh, H.: Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free surface fluid flows. Appl. Math. Model. 116, 84–121 (2023)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This paper has been supported by SLOWD project. The SLOWD project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 815044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Martinez-Carrascal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Carrascal, J., Pizzoli, M., Saltari, F. et al. Sloshing reduced-order model trained with Smoothed Particle Hydrodynamics simulations. Nonlinear Dyn 111, 21099–21115 (2023). https://doi.org/10.1007/s11071-023-08940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08940-7

Keywords

Navigation