Skip to main content
Log in

Propagation of dissipative simple vortex-, necklace- and azimuthon-shaped beams in Kerr and non-Kerr negative-refractive-index materials beyond the slowly varying envelope approximation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present an explicit derivation of a (3+1)-dimensional [(3+1)D] cubic- quintic-septic complex Ginzburg–Landau (CQS-CGL) equation, including diffraction, linear dispersions up to the seventh order, loss, gain, cubic-quintic-septic nonlinearities, as well as cubic-quintic-septic first-order self-steepening effects. The new model equation, derived from Maxwell equations beyond the slowly varying envelope approximation, describes the dynamics of dissipative light bullets in nonlinear metamaterials (MMs). Using direct numerical simulations of the whole (3+1)D CQS-CGL equation, we present the evolution of various dissipative optical bullets in MMs characterized by different topological charges, namely, the fundamental vortex, necklace, and azimuthons. The bullet amplitudes and phase distributions support the emergence of new propagating modes under parameter values that promote their instability. However, with the right choice of higher-order parameters, especially the cubic, quintic and septic self-steepening coefficients, the numerical simulations are capable of achieving the stability of the studied. Under unstable conditions, even multipole vortices are found to converge in the rotating frame, the fundamental spherical light bullet, while their amplitude drops drastically. The results suggest that the presence of higher-order nonlinear effects, balanced by the higher-order dispersive terms, prevent the light bullets, with different topological charges, from collapsing, with rotation direction specific to negative-index MMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The simulation data related to the current study are not publicly available due to but can be obtained from the corresponding author, CBT, on reasonable request.

References

  1. Veselago, V.G.: The electrogynamic of subtances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509 (1968)

    Google Scholar 

  2. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from Conductors, and Enhanced Non-linear Phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    Google Scholar 

  3. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Google Scholar 

  4. Pendry, J.B.: Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 85, 3966 (2000)

    Google Scholar 

  5. Kästel, J., Fleischhauer, M., Yelin, S.F., Walsworth, R.L.: Tunable Negative Refraction without Absorption via Electromagnetically Induced Chirality. Phys. Rev. Lett. 99, 073602 (2007)

    Google Scholar 

  6. Stockman, M.I.: Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality. Phys. Rev. Lett. 98, 177404 (2007)

    Google Scholar 

  7. Kinsler, V., McCall, M.W.: Criteria for a negative refractive index must be used with care. Phys. Rev. Lett. 101, 167401 (2008)

    Google Scholar 

  8. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Google Scholar 

  9. Cai, W.S., Genov, D.A., Shalaev, V.M.: Superlens based on metal-dielectric. Phys. Rev. B 72, 193101 (2005)

    Google Scholar 

  10. Belov, P.A., Simovski, C.R.: Subwavelength metallic waveguides loaded by uniaxial resonant scatterers. Phys. Rev. E 72, 036618 (2005)

    Google Scholar 

  11. Engheta, N.: An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. Antennas Wireless Propag. Lett. 1, 10 (2002)

    Google Scholar 

  12. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 314, 977 (2006)

    Google Scholar 

  13. Cai, W.S., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1, 224 (2007)

    Google Scholar 

  14. Marklund, M., Shukla, P.K., Stenflo, L.: Ultrashort solitons and kinetic effects in nonlinear metamaterials. Phys. Rev. E 73, 037601 (2006)

    Google Scholar 

  15. Lazarides, N., Tsironis, G.P.: Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. Phys. Rev. E 71, 036614 (2005)

    Google Scholar 

  16. Wen, S.C., Xiang, Y., Su, W., Hu, Y., Fu, X., Fan, D.: Role of the anomalous self-steepening effect in modulation instability in negative-index material. Opt. Express 14, 1568 (2006)

    Google Scholar 

  17. Kourakis, I., Shukla, P.K.: Magnetization of left-handed metamaterials. Phys. Scr. 74, 422 (2006)

    Google Scholar 

  18. Zharov, A.A., Shadrivov, I.V., Kivshar, Y.S.: Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003)

    Google Scholar 

  19. Baltuska, A., Wei, Z., Pshenichnikov, M.S., Wiersma, D.A.: Optical pulse compression to 5 fs at a 1-MHz repetition rate. Opt. Lett. 22, 102 (1997)

    Google Scholar 

  20. Rothenberg, J.E.: Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. Opt. Lett. 17, 1340 (1992)

    Google Scholar 

  21. Ranka, J.K., Gaeta, A.L.: Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Opt. Lett. 23, 534 (1998)

    Google Scholar 

  22. Lin, Q., Wintner, E.: Three-dimensional evolution of ultrashort pulses in dispersive media beyond the slowly varying envelope approximation. Opt. Commun. 150, 185 (1998)

    Google Scholar 

  23. Brabec, T., Krausz, F.: Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282 (1997)

    Google Scholar 

  24. Wegener, M.: Extreme Nonlinear Optics: An Introduction. Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  25. Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    Google Scholar 

  26. Besse, V., Boudebs, G., Leblond, H.: Determination of the third- and fifth-order optical nonlinearities: the general case. Appl. Phys. B 116, 911 (2014)

    Google Scholar 

  27. Tanev, S., Pushkarov, D.I.: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides. Opt. Commun. 141, 322 (1997)

    Google Scholar 

  28. Acioli, L.H., Gomes, A.S.L., Hickmann, J.M., de Araujo, C.B.: Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light. Appl. Phys. Lett. 56, 2279 (1990)

    Google Scholar 

  29. Lawrence, B., Torruellas, W.E., Cha, M., Sundheimer, M.L., Stegeman, G.I., Meth, J., Etemad, S., Baker, G.: Identification and role of two-photon excited states in a \(\pi -\)conjugated polymer. Phys. Rev. Lett. 73, 597 (1994)

    Google Scholar 

  30. Smektala, F., Quemard, C., Couderc, V., Barthélémy, A.: Non-linear optical properties of chalcogenide glasses measured by Z-scan. J. Non-Cryst. Solids 274, 232 (2000)

    Google Scholar 

  31. Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Lu, Z., Zhao, L., Nie, Y.: Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B 19, 369 (2002)

    Google Scholar 

  32. Gatz, S., Herrmann, J.: Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17, 484 (1992)

    Google Scholar 

  33. Gu, B., Wang, Y., Ji, W., Wang, J.: Observation of a fifth-order optical nonlinearity in Bi\(_{0.9}\)La\(_{0.1}\)Fe\(_{0.98}\)Mg\(_{0.02}\)O\(_3\) ferroelectric thin films. Appl. Phys. Lett. 95, 041114 (2009)

    Google Scholar 

  34. Falcao-Filho, E.L., Barbosa-Silva, R., Sobral-Filho, R.G., Brito-Silva, A.M., Galembeck, A., de Araujo, C.B.: High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm. Opt. Exp. 18, 21636 (2010)

    Google Scholar 

  35. Bedaque, P.F., Braaten, E., Hammer, H.W.: Three-body recombination in Bose Gases with large scattering length. Phys. Rev. Lett. 85, 908 (2000)

    Google Scholar 

  36. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Google Scholar 

  37. He, X.T.: The collective effects on the bremsstrahlung in plasma. Acta Phys. Sin. 30, 1415 (1981)

    Google Scholar 

  38. Djolos, R. V., Kartavenko, V. G., Permyakov, V. G.: Nuclear hydrodynamics and collective density oscillations. Yad. Fiz. 34, 144 (1981) [Sov. J. Nucl. Phys. 34, 800 (1981)]

  39. Michinel, H., Paz-Alonso, M.J., Perez-Garcia, V.M.: Turning light into a liquid via atomic coherence. Phys. Rev. Lett. 96, 023903 (2006)

    Google Scholar 

  40. Scalora, M., Syrchin, M.S., Akozbek, N., Poliakov, E.Y., D’Aguanno, G., Mattiucci, N., Bloemer, M.J., Zheltikov, A.M.: Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials. Phys. Rev. Lett. 95, 013902 (2005)

    Google Scholar 

  41. Moses, J., Wise, F.W.: Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Phys. Rev. Lett. 97, 073903 (2006)

    Google Scholar 

  42. Wen, S., Xiang, Y., Dai, X., Tang, Z., Su, W., Fan, D.: Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Phys. Rev. A 75, 033815 (2007)

    Google Scholar 

  43. Drozdov, A.A., Kozlov, S.A., Sukhorukov, A.A., Kivshar, Y.S.: Self-phase modulation and frequency generation with few-cycle optical pulses in nonlinear dispersive media. Phys. Rev. A 86, 053822 (2012)

    Google Scholar 

  44. Xiang, Y., Dai, X., Wen, S., Guo, J., Fan, D.: Controllable Raman soliton self-frequency shift in nonlinear metamaterials. Phys. Rev. A 84, 033815 (2011)

    Google Scholar 

  45. Onana Essama, B.G., Atangana, J., Biya Motto, F., Mokhtari, B., Eddeqaqi, N.C., Kofané, T.C.: Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion. Phys. Rev. E 90, 032911 (2014)

    Google Scholar 

  46. Skupin, S., Saffman, M., Królikowski, W.: Nonlocal Stabilization of Nonlinear Beams in a Self-Focusing Atomic Vapor. Phys. Rev. Lett. 98, 263902 (2007)

    Google Scholar 

  47. Panoiu, N.-C., Osgood, R.M., Jr., Malomed, B.A., Lederer, F., Mazilu, D., Mihalache, D.: Parametric light bullets supported by quasi-phase-matched quadratically nonlinear crystal. Phys. Rev. E 71, 036615 (2005)

    Google Scholar 

  48. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optic. Phys. Rep. 463, 1 (2008)

    Google Scholar 

  49. Theocharis, G., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Kivshar, Y.S.: Ring dark solitons and vortex necklaces in Bose-Einstein condensates. Phys. Rev. Lett. 90, 120403 (2003)

    Google Scholar 

  50. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  51. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  52. Skarka, V., Aleksic, N.B., Berezhiani, V.I.: Self-organization of dissipationless solitons in positive- and negative-refractive-index materials. Phys. Rev. A 81, 045803 (2010)

    Google Scholar 

  53. Chen, Yi.-X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3+1)-dimensional cubic-quintic Schrödinger equation in PT-symmetric potentials. Nonl. Dyn. 79, 427 (2015)

    Google Scholar 

  54. Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.-C., Torner, L., Malomed, B.A.: Stable vortex Tori in the three-dimensional cubic-quintic Ginzburg-Landau equation. Phys. Rev. Lett. 97, 073904 (2006)

    Google Scholar 

  55. Soto-Crespo, J.M., Akhmediev, N., Grelu, P.: Optical bullets and double bullet complexes in dissipative systems. Phys. Rev. E 74, 046612 (2006)

    Google Scholar 

  56. Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes. Chaos 17, 037112 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Djoko, M., Tabi, C.B., Kofané, T.C.: Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg-Landau equation in presence of higher-order dispersions. Chaos Solit. Fract. 147, 110957 (2021)

    MathSciNet  Google Scholar 

  58. Li, H.-J., Wu, Y.-P., Huang, G.: Stable weak light ultraslow spatiotemporal solitons via atomic coherence. Phys. Rev. A 84, 033816 (2011)

    Google Scholar 

  59. Desyatnikov, A.S., Sukhorukov, A.A., Kivshar, Y.S.: Azimuthons: spatially modulated vortex solitons. Phys. Rev. Lett. 95, 203904 (2005)

    Google Scholar 

  60. Soljaci, M., Segev, M.: Integer and fractional angular momentum born on self-trapped necklace-ring beams. Phys. Rev. Lett. 86, 420 (2001)

    Google Scholar 

  61. Liu, Y., Zhu, R., Qin, Z., Chu, F.: A comprehensive study on vibration characteristics of corrugated cylindrical shells with arbitrary boundary conditions. Eng. Struct. 269, 114818 (2022)

    Google Scholar 

  62. Liu, Y., Hu, W., Zhu, R., Safaei, B., Qin, Z., Chu, F.: Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact. Aerosp. Sci. Technol. 121, 107321 (2022)

    Google Scholar 

  63. Chen, Y., Beckwitt, K., Wise, F., Aiken, B., Sanghera, J., Aggarwal, I.D.: Measurement of fifth- and seventh-order nonlinearities of glasses. J. Opt. Soc. Am. B 23, 347 (2006)

    Google Scholar 

  64. Raja, S.V., Govindarajan, A., Mahalingam, A., Lakshmanan, M.: Multifaceted dynamics and gap solitons in PT-symmetric periodic structures. Phys. Rev. A 100, 033838 (2019)

    Google Scholar 

  65. Xu, B., Yan, M., Sun, Z., Tong, X.: Optical solitons of the (1+ 1)-dimensional higher-order nonlinear Schrödinger equations with PT-symmetric potentials. Optik 181, 1019 (2019)

    Google Scholar 

  66. Reyna, A.S., Malomed, B.A., de Araújo, C.B.: Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media. Phys. Rev. A 92, 033810 (2015)

    Google Scholar 

  67. Reyna, A.S., Jorge, K.C., de Araújo, C.B.: Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014)

    Google Scholar 

  68. Reyna, A.S., de Araújo, C.B.: Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express 22, 22456 (2014)

    Google Scholar 

  69. Chen, Y.X.: One-dimensional optical solitons in cubic-quintic-septimal media with PT-symmetric potentials. Nonl. Dyn. 87, 1629 (2017)

    Google Scholar 

  70. Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials. Nonl. Dyn. 87, 1675 (2017)

    Google Scholar 

  71. Messouber, A., Triki, H., Azzouzi, F., Zhou, Q., Biswas, A., Moshokoa, S.P., Belic, M.: Propagation properties of dipole-managed solitons through an inhomogeneous cubic-quintic-septic medium. Opt. Commun. 425, 64 (2018)

    Google Scholar 

  72. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonl. Dyn. 92, 1351 (2018)

    Google Scholar 

  73. Chen, Y.-X., Zheng, L.-H., Xu, F.-Q.: Spatiotemporal vector and scalar solitons of the coupled nonlinear Schrödinger equation with spatially modulated cubic-quintic-septimal nonlinearities. Nonl. Dyn. 93, 2379 (2018)

    Google Scholar 

  74. Wu, H.Y., Jiang, L.H., Wu, Y.F.: The stability of two-dimensional spatial solitons in cubic-quintic-septimal nonlinear media with different diffractions and PT-symmetric potentials. Nonl. Dyn. 87, 1667 (2017)

    Google Scholar 

  75. Zhu, H.P., Pan, Z.H.: Stability of Gaussian-type light bullets in the cubic-quintic-septimal nonlinear media with different diffractions under PT-symmetric potentials. Nonl. Dyn. 89, 1745 (2017)

    MathSciNet  Google Scholar 

  76. Triki, H., Biswas, A., Milović, D., Belić, M.: Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. Opt. Commun. 366, 362 (2016)

    Google Scholar 

  77. Abemgnigni Njifon, M., Tabi, C.B., Kofané, T.C.: Few-cycle optical pulses in negative index materials in dispersive permittivity and permeability. J. Opt. Soc. Am. B 37, A331 (2020)

    Google Scholar 

  78. Triki, H., Porsezian, K., Tchofo Dinda, P., Grelu, P.: Dark spatial solitary waves in a cubic-quintic-septimal nonlinear medium. Phys. Rev. A 95, 023837 (2017)

    Google Scholar 

  79. Ndebele, K.K., Tabi, C.B., Latchio Tiofack, C.G., Kofané, T.C.: Higher-order dispersion and nonlinear effects of optical fibers under septic self-steepening and self-frequency shift. Phys. Rev. E 104, 044208 (2021)

    Google Scholar 

  80. Megne, L.T., Tabi, C.B., Kofané, T.C.: Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation. Phys. Rev. E 102, 042207 (2020)

    Google Scholar 

  81. Gay-Balmaz, P., Martin, O.J.F.: Efficient isotropic magnetic resonators. Appl. Phys. Lett. 81, 939 (2002)

    Google Scholar 

  82. Li, J., Huang, Y.: Introduction to Metamaterials. In: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics, vol 43 (Springer, Berlin, Heidelberg, 2013)

  83. Kourakis, I., Lazarides, N., Tsironis, G.P.: Self-focusing and envelope pulse generation in nonlinear magnetic metamaterials. Phys. Rev. E 75, 067601 (2007)

    Google Scholar 

  84. Hai-Lan, L., Shuang-Chun, W., Min, X., Xiao-Yu, D.: Formation and propagation of dark solitons in metamaterials. Acta Optica Sinica 56, 6473 (2007)

    Google Scholar 

  85. Shadrivov, I.V., Kozyrev, A.B., Van der Weide, D.W., Kivshar, Y.S.: Tunable transmission and harmonic generation in nonlinear metamaterials. Appl. Phys. Lett. 93, 161903 (2008)

    Google Scholar 

  86. Yang, F., Xue, Y.: Propagation of optical dark solitons in metamaterials. J. Phys: Conf. Series 1815, 012027 (2021)

    Google Scholar 

  87. Min, X., Yang, R., Tian, J., Xue, W., Christian, J.M.: Exact dipole solitary wave solution in metamaterials with higher-order dispersion. J. Modern Opt. 63, S44 (2016)

    Google Scholar 

  88. Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third- and fourth-order dispersions. Opt. and Quant. Electron. 54, 271 (2022)

    Google Scholar 

  89. Ali, A.K.S., Ullah, M.Z., Lakshmanan, M.: Self-trapped dynamics of a hollow Gaussian beam in metamaterials. Phys. Lett. A 384, 126744 (2020)

    MathSciNet  Google Scholar 

  90. Bendahmane, I., Triki, H., Biswas, A., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Bright, dark and W-shaped solitons with extended nonlinear Schrödinger’s equation for odd and even higher-order terms. Superlat. Microstr. 114, 53 (2018)

    Google Scholar 

  91. Vysloukh, V.A., Sukhotskova, N.A.: Influence of third-order dispersion on the generation of a train of picosecond pulses in fiber waveguides due to self-modulation instability. Sov. J. Quantum Electron. 17, 1509 (1987)

    Google Scholar 

  92. Potasek, M.J.: Modulation instability in an extended nonlinear Schrödinger equation. Opt. Lett. 12, 921 (1987)

    Google Scholar 

  93. Hook, A., Karlsson, M.: Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion. Opt. Lett. 18, 1388 (1993)

    Google Scholar 

  94. Abou’ou, M.N.Z., Tchoffo Dinda, P., Ngabireng, C.M., Kibler, B., Smektala, F.J.: Modulation instability in metamarerials with saturable. J. Opt. Soc. Am. B 28, 1518 (2011)

    Google Scholar 

  95. Droques, M., Kudlinski, A., Bouwmans, G., Martinelli, G., Mussot, A., Armaroli, A., Biancalana, F.: Fourth-order dispersion mediated modulation instability in dispersion oscillating fibers. Opt. Lett. 38, 3464 (2013)

    Google Scholar 

  96. Latchio Tiofack, C.G., Mohamadou, A., Alim Porsezian, K., Kofané, T.C.: Modulational instability in metamaterials with saturable nonlinearity and higher-order dispersion. J. Mod. Opt. 59, 972 (2012)

    Google Scholar 

  97. Kalashnikov, V.L., Fernandez, A., Apolonski, A.: High-order dispersion in chirped-pulse oscillators. Opt. Express 16, 4206 (2008)

    Google Scholar 

  98. Engelen, R.J.P.: The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658 (2006)

    Google Scholar 

  99. Cristiani, I., Tediosi, R., Tartara, L., Degiorgio, V.: Dispersive wave generation by solitons in microstructured optical fibers. Opt Express 12, 124 (2004)

    Google Scholar 

  100. Porras, M.A.: Propagation of single-cycle pulsed light beams in dispersive media. Phys. Rev. A 60, 5069 (1999)

    Google Scholar 

  101. Kinsler, P., New, G.H.C.: Few-cycle pulse propagation. Phys. Rev. A 67, 023813 (2003)

    Google Scholar 

  102. de la Fuente, R., Varela, O., Michinel, H.: Fourier analysis of non-paraxial self-focusing. Opt. Commun. 173, 403 (2000)

    Google Scholar 

  103. Matuszewski, M., Wasilewski, W., Trippenbach, M., Band, Y.B.: Self-consistent treatment of the full vectorial nonlinear optical pulse propagation equation in an isotropic medium. Opt. Commun. 221, 337 (2003)

    Google Scholar 

  104. Ciattoni, A., Conti, C., Del Re, E., Di Porto, P., Crosignani, B., Yariv, A.: Polarization and energy dynamics in ultrafocused optical Kerr propagation. Opt. Lett. 27, 734 (2002)

    Google Scholar 

  105. Tsurumi, T.: Propagation of few- to sub-cycle pulse in dispersive media. J. Phys. Soc. Jpn 75, 024002 (2006)

    Google Scholar 

  106. Kolesik, M., Moloney, J.V., Mlejnek, M.: Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89, 283902 (2002)

    Google Scholar 

  107. Ambassa Otsobo, J.A., Tiam Megne, L., Tabi, C.B., Kofané, T.C.: Stability of nonparaxial gap-soliton bullets in waveguide gratings. Chaos Solit. Fract. 158, 112034 (2022)

    MathSciNet  MATH  Google Scholar 

  108. Fibich, G.: Small beam nonparaxiality arrests self-focusing of optical beams. Phys. Rev. Lett. 76, 4356 (1996)

    Google Scholar 

  109. Ferrando, A., Zaarés, M., Fernández de Córdoba, P., Binosi, D., Montero, A.: Forward-backward equations for nonlinear propagation in axially invariant optical systems. Phys. Rev. E 71, 016601 (2005)

    Google Scholar 

  110. Kinsler, P., Radnor, S.B.P., New, G.H.C.: Theory of directional pulse propagation. Phys. Rev. A 72, 063807 (2005)

    Google Scholar 

  111. Mizuta, Y., Nagasawa, M., Ohtani, M., Yamashita, M.: Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase. Phys. Rev. A 72, 063802 (2005)

    Google Scholar 

  112. Kuszner, M., Leble, S., Reichel, B.: Multimode systems of nonlinear equations: Derivation, integrability, and numerical solutions. Theor. Math. Phys. 168, 974 (2011)

    MathSciNet  Google Scholar 

  113. Maluckov, A., Hadzievski, Lj., Lazarides, N., Tsironis, G.P.: Left-handed metamaterials with saturable nonlinearity. Phys. Rev. E 77, 046607 (2008)

    Google Scholar 

  114. Zhong, W.-P., Belić, M.R., Assanto, G., Malomed, B.A., Huang, T.: Self-trapping of scalar and vector dipole solitary waves in Kerr media. Phys. Rev. E 83, 043833 (2011)

    Google Scholar 

  115. Xu, S.-L., Zhao, G.-P., Belić, M.R., He, J.-R., Xue, L.: Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential. Opt. Express 25, 9094 (2017)

  116. Soljacić, M., Sears, S., Segev, M.: Self-trapping of Necklace beams in self-focusing Kerr media. Phys. Rev. Lett. 81, 4851 (1998)

    Google Scholar 

  117. He, Y.J., Malomed, B.A., Wang, H.Z.: Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media. Opt. Express 15, 17502 (2007)

    Google Scholar 

  118. Djoko, M., Tabi, C.B., Kofané, T.C.: Robust propagation of optical vortex beams, necklace-ring solitons, soliton clusters and uniform-ring beams generated in the frame of the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau equation. Phys. Scr. 94, 075501 (2019)

    Google Scholar 

  119. Zhang, Y.Q., Skupin, S., Maucher, F., Pour, A.G., Lu, K.Q., Królikowski, W.: Azimuthons in weakly nonlinear waveguides of different symmetries. Opt. Express 18, 27846 (2010)

    Google Scholar 

  120. Buccoliero, D., Desyatnikov, A.S., Krolikowski, W., Kivshar, Y.S.: Laguerre and Hermite soliton clusters in nonlocal nonlinear media. Phys. Rev. Lett. 98, 053901 (2007)

    Google Scholar 

  121. Wu, Z.K., Wang, Z.P., Guo, H., Wang, W., Gu, Y.Z.: Self-accelerating Airy-Laguerre-Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium. Opt. Express 25, 30468 (2017)

    Google Scholar 

  122. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonl. Dyn. 104, 1007 (2021)

    Google Scholar 

  123. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of rotating cylindrical shells under multi-harmonic excitations in thermal environment. Nonl. Dyn. 108, 2977 (2022)

    Google Scholar 

  124. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci. 201, 106474 (2021)

    Google Scholar 

  125. Liu, Y., Qin, Z., Chu, F.: Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Commun. Nonl. Sci. Numer. Simul. 107, 106146 (2022)

    MathSciNet  MATH  Google Scholar 

  126. Liu, Y., Wang, J., Hu, J., Qin, Z., Chu, F.: Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields. Appl. Math. Mech. -Engl. Ed. 43(10), 1543 (2022)

    MathSciNet  MATH  Google Scholar 

  127. Shafeeque Ali, A.K., Govindarajan, A., Lakshmanan, M.: Stabilization of light bullets in nonlinear metamaterial waveguides. Phys. Rev. A 105, 033516 (2022)

    MathSciNet  MATH  Google Scholar 

  128. Wu, Z., Wang, Z.: Optical vortices in the Ginzburg-Landau equation with cubic-quintic nonlinearity. Nonl. Dyn. 94, 2363 (2018)

    Google Scholar 

  129. Eilenberger, F., Prater, K., Minardi, S., Geiss, R., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Pertsch, T.: Observation of discrete, vortex light bullets. Phys. Rev. X 3, 041031 (2013)

    Google Scholar 

  130. Zanga, D., Fewo, S.I., Tabi, C.B., Kofané, T.C.: Generation of dissipative solitons in doped optical fiber modeled by the higher-order dispersive cubic-quintic-septic complex Ginzburg-Landau equation. Phys. Rev. A 105, 023502 (2022)

  131. Tabi, C.B., Wamba, E., Nare, E., Kofané, T.C.: Interplay between spin-orbit couplings and residual interatomic interactions in the modulational instability of two-component Bose-Einstein condensates. Phys. Rev. E 107, 044206 (2023)

  132. Tabi, C.B., Tagwo, H., Tiofack, C.G.L., Kofané, T.C.: Pure quartic modulational instability in weakly nonlocal birefringent fibers. Opt. Lett. 47, 5557 (2022)

    Google Scholar 

  133. Tiofack Latchio, C.G., Tabi, C.B., Tagwo, H., Kofané, T.C.: Nonlocal cubic and quintic nonlinear wave patterns in pure-quartic media. J. Optics 25, 054001 (2023)

    MATH  Google Scholar 

  134. Tabi, C.B., Tagwo, H., Kofané, T.C.: Modulational instability in nonlinear saturable media with competing nonlocal nonlinearity. Phys. Rev. E 106, 054201 (2022)

  135. Silahli, S.Z., Walasik, W., Litchinitser, N.M.: Modulation instability of structured-light beams in negative-index metamaterials. J. Opt. 18, 054010 (2016)

Download references

Funding

CBT thanks the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant no.NSF PHY-1748958, NIH Grant no.R25GM067110, and the Gordon and Betty Moore Foundation Grant no.2919.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Tabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficients \( W_{2}\), \( W_{3}\),\( W_{4}\),\( W_{5}\), \( W_{6}\) of Eq.(11)

$$\begin{aligned} W_{2}= & {} -c^{2}v^{-2}_{g}+\frac{1}{2}\omega _{0}(\mu \alpha _{2}+\varepsilon \beta _{2})+ \alpha _{1}\beta _{1},\nonumber \\ W_{3}= & {} \frac{\omega _{0}}{6}(\mu \alpha _{3}+\varepsilon \beta _{3})+\frac{1}{2}(\beta _{1}\alpha _{2}+\beta _{2}\alpha _{1}),\nonumber \\ W_{4}= & {} \frac{\omega _{0}}{24}(\mu \alpha _{4}{+}\varepsilon \beta _{4})+\frac{1}{6}(\beta _{1}\alpha _{3}+\beta _{3}\alpha _{1})+\frac{1}{4}(\alpha _{2}\beta _{2}),\nonumber \\ W_{5}= & {} \frac{\omega _{0}}{120}(\mu \alpha _{5}+\varepsilon \beta _{5})+\frac{1}{24}(\beta _{1}\alpha _{4}+\beta _{4}\alpha _{1}) \nonumber \\{} & {} +\frac{1}{12}(\alpha _{3}\beta _{2}+\alpha _{2}\beta _{3}),\end{aligned}$$
(22)
$$\begin{aligned} W_{6}= & {} \frac{\omega _{0}}{720}(\mu \alpha _{6}+\varepsilon \beta _{6})+\frac{1}{120}(\beta _{1}\alpha _{5}+\beta _{5}\alpha _{1})\nonumber \\{} & {} +\frac{1}{48}(\alpha _{4}\beta _{2}+\alpha _{2}\beta _{4})+\frac{1}{36}(\alpha _{3}\beta _{3}). \end{aligned}$$
(23)

Appendix B: Coefficients of the (3+1)D cubic-quintic-septic CGL Eq.(14)

$$\begin{aligned} \sigma _{\bot }= & {} \textrm{sgn}(n)-2i\frac{k_{i}}{k^{2}_{r}},\;k_{2r}=\textrm{sgn}\left( -\frac{\textrm{Re}[W_{2}]}{n\varpi }\right) ,\nonumber \\ k_{2i}= & {} \frac{\textrm{Im}[W_{2}]}{n\varpi }\left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| ,\nonumber \\ k_{3r}= & {} \frac{3}{6}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{\frac{3}{2}}\left( \omega _{p}\frac{\textrm{Re}[W_{3}]}{n\varpi }-\frac{\textrm{Re}[W_{2}]c}{n^{2}\varpi ^{2}v_{g}}\right) ,\nonumber \\ k_{3i}= & {} \frac{3}{6}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{\frac{3}{2}}\left( \omega _{p}\frac{\textrm{Im}[W_{3}]}{n\varpi }-\frac{\textrm{Im}[W_{2}]c}{n^{2}\varpi ^{2}v_{g}}\right) ,\nonumber \\ k_{4r}= & {} \frac{12}{24}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{2}\nonumber \\{} & {} \times \left( \omega ^{2}_{p}\frac{\textrm{Re}[W_{4}]}{n\varpi }-\frac{(\textrm{Re}[W_{2}])^{2}-(\textrm{Im}[W_{2}])^{2}}{4n^{2}\varpi ^{2}}\right. \nonumber \\{} & {} \left. -\omega _{p}\frac{\textrm{Re}[W_{3}]}{n^{2}\varpi ^{2}v_{g}}\right) ,\nonumber \\ k_{4i}= & {} \frac{12}{24}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{2}\nonumber \\{} & {} \times \left( \omega ^{2}_{p}\frac{\textrm{Im}[W_{4}]}{n\varpi }-\frac{\textrm{Re}[W_{2}]\textrm{Im}[W_{2}]}{2n^{2}\varpi ^{2}}\right. \nonumber \\{} & {} \left. -\omega _{p}\frac{\textrm{Im}[W_{3}]}{n^{2}\varpi ^{2}v_{g}}\right) ,\nonumber \\ k_{5r}= & {} \frac{60}{120}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{\frac{5}{2}}\nonumber \\{} & {} \times \Big (\omega ^{3}_{p}\frac{\textrm{Re}[W_{5}]}{n\varpi } -\omega _{p}c\frac{\textrm{Re}[W_{4}]}{n^{2}\varpi ^{2}v_{g}}\nonumber \\{} & {} -\omega _{p}\frac{(\textrm{Re}[W_{2}]\textrm{Im}[W_{3}]+\textrm{Im}[W_{2}]\textrm{Re}[W_{3}])}{n^{3}\varpi ^{3}}\Big ),\nonumber \\ k_{5i}= & {} \frac{60}{120}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{\frac{5}{2}}\Big (\omega ^{3}_{p}\frac{\textrm{Im}[W_{5}]}{n\varpi }{-}\omega _{p}c\frac{\textrm{Im}[W_{4}]}{n^{2}\varpi ^{2}v_{g}}\nonumber \\{} & {} -\omega _{p}\frac{(\textrm{Re}[W_{2}]\textrm{Re}[W_{3}]-\textrm{Im}[W_{2}]\textrm{Im}[W_{3}])}{n^{3}\varpi ^{3}}\Big ),\nonumber \\ k_{6r}= & {} \frac{360}{720}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{3}\Big (-\omega ^{4}_{p}\frac{\textrm{Re}[W_{6}]}{n\varpi }\nonumber \\{} & {} +\omega ^{2}_{p}\left( \frac{\textrm{Re}[W_{2}]\textrm{Re}[W_{4}]-\textrm{Im}[W_{2}]\textrm{Im}[W_{4}]}{4n^{3}\varpi ^{3}}\right) \nonumber \\{} & {} +\omega ^{2}_{p}\frac{\textrm{Re}[W_{3}]}{4n^{3}\varpi ^{3}}+\omega ^{3}_{p}c\frac{\textrm{Re}[W_{5}]}{n^{2}\varpi ^{2}v_{g}}\Big ),\nonumber \\ k_{6i}= & {} \frac{360}{720}\left( \left| \frac{n\varpi }{\textrm{Re}[W_{2}]}\right| \right) ^{3}\Big (-\omega ^{4}_{p}\frac{\textrm{Im}[W_{6}]}{n\varpi }\nonumber \\{} & {} +\omega ^{2}_{p}\left( \frac{\textrm{Re}[W_{2}]\textrm{Im}[W_{4}]+\textrm{Im}[W_{2}]\textrm{Re}[W_{4}]}{4n^{3}\varpi ^{3}}\right) \nonumber \\{} & {} +\omega ^{2}_{p}\frac{\textrm{Im}[W_{3}]}{4n^{3}\varpi ^{3}}-\omega ^{3}_{p}c\frac{\textrm{Im}[W_{5}]}{n^{2}\varpi ^{2}v_{g}}\Big ),\nonumber \\ \delta= & {} i\frac{\varpi }{2n}\textrm{Im}[\varepsilon \mu ],\;\;N_{3}=\textrm{sgn}(\chi ^{(3)}_{r})+i\frac{\chi ^{(3)}_{i}}{|\chi ^{(3)}_{r}|}, \nonumber \\ N_{5}= & {} \frac{-\chi ^{(5)}_{r}}{|\chi ^{(3)}_{r}|}-\frac{\chi ^{(3)}_{r}\chi ^{(3)}_{r}-\chi ^{(3)}_{i}\chi ^{(3)}_{i}}{{4n|\chi ^{(3)}_{r}|}}\nonumber \\{} & {} -i\left( \frac{\chi ^{(5)}_{i}}{|\chi ^{(3)}_{r}|}+\frac{2\chi ^{(3)}_{r}\chi ^{(3)}_{i}}{{4n|\chi ^{(3)}_{r}|}}\right) ,\nonumber \\ N_{7}= & {} \frac{\chi ^{(7)}_{r}}{|\chi ^{(3)}_{r}|}+\frac{\chi ^{(3)}_{r}\chi ^{(5)}_{r}-\chi ^{(3)}_{i}\chi ^{(5)}_{i}}{{4n|\chi ^{(3)}_{r}|}}\nonumber \\{} & {} +i\left( \frac{\chi ^{(7)}_{i}}{|\chi ^{(3)}_{r}|}+\frac{\chi ^{(3)}_{r}\chi ^{(5)}_{i}+\chi ^{(5)}_{r}\chi ^{(3)}_{i}}{{4n|\chi ^{(3)}_{r}|}}\right) \nonumber \\ SS_{3}= & {} -\frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\chi ^{(3)}_{i}}{\left| \left( -\frac{\chi ^{(3)}_{r}\textrm{Re}[W]}{n\varpi }\right) \right| }\nonumber \\{} & {} +i\left( \frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\textrm{sgn}\left( \chi ^{(3)}_{r}\right) }{\left| \left( -\frac{\textrm{Re}[W]}{n\varpi }\right) \right| }\right) ,\nonumber \\ SS_{5}= & {} -\frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\chi ^{(5)}_{i}}{\left| \left( -\frac{\textrm{Re}[W]}{n\varpi }\right) \right| |\chi ^{(3)}_{r}|}\nonumber \\{} & {} +i\left( \frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\chi ^{(5)}_{r}}{\left| \left( -\frac{\textrm{Re}[W]}{n\varpi }\right) \right| |\chi ^{(3)}_{r}|}\right) ,\nonumber \\ SS_{7}= & {} -\frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\chi ^{(7)}_{i}}{\left| \left( -\frac{\textrm{Re}[W]}{n\varpi }\right) \right| |\chi ^{(3)}_{r}|}\nonumber \\{} & {} +i\left( \frac{1}{\varpi }\left( 1+\frac{1}{2nv_{g}}\right) \frac{\chi ^{(7)}_{r}}{\left| \left( -\frac{\textrm{Re}[W]}{n\varpi }\right) \right| |\chi ^{(3)}_{r}|}\right) \nonumber \\ \end{aligned}$$
(24)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megne, L.T., Tabi, C.B., Otsobo, J.A.A. et al. Propagation of dissipative simple vortex-, necklace- and azimuthon-shaped beams in Kerr and non-Kerr negative-refractive-index materials beyond the slowly varying envelope approximation. Nonlinear Dyn 111, 20289–20309 (2023). https://doi.org/10.1007/s11071-023-08939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08939-0

Keywords

Navigation