Skip to main content
Log in

N-soliton solutions for a variable coefficient trihydrogen chain \(\alpha \)-helix protein system with gain or loss terms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a class of variable coefficient coupled Schrödinger equations with gain or loss terms is studied, which can be used to describe soliton excitation in non-uniform trihydrogen chain \(\alpha \)-helix proteins. The N-soliton solutions of this equation are obtained by using the Hirota bilinear method, the 1,2, 3-soliton solutions are numerically simulated, and their dynamic properties are analyzed. On this basis, the asymptotic behavior of soliton solutions is discussed. Besides, the influence of variable coefficient function and other parameters on solitons is studied, the corresponding rules are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data available within the article or its supplementary materials. We confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992). https://doi.org/10.1007/BF00946631

    Article  MathSciNet  MATH  Google Scholar 

  2. Taha, T.R., Ablowitz, M.I.: Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984). https://doi.org/10.1016/0021-9991(84)90003-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Shi, Y., Zhang, Y., Xu, S.: Families of nonsingular soliton solutions of a nonlocal Schrödinger–Boussinesq equation. Nonlinear Dyn. 94, 2327–2334 (2018). https://doi.org/10.1007/s11071-018-4491-8

    Article  MATH  Google Scholar 

  4. Nisar, K.S., Ali, K.K., Inc, M., et al.: New solutions for the generalized resonant nonlinear Schrödinger equation. Results Phys. 33, 105153 (2022). https://doi.org/10.1016/j.rinp.2021.105153

    Article  Google Scholar 

  5. Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Soliton Fract. 13(9), 1917–1929 (2002). https://doi.org/10.1016/S0960-0779(01)00189-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Shi, Y., Shen, S.F., Zhao, S.L.: Solutions and connections of nonlocal derivative nonlinear Schrödinger equations. Nonlinear Dyn. 95, 1257–1267 (2019). https://doi.org/10.1007/s11071-018-4627-x

    Article  MATH  Google Scholar 

  7. Ren, P., Rao, J.: Bright-dark solitons in the space-shifted nonlocal coupled nonlinear Schrödinger equation. Nonlinear Dyn. 108(3), 2461–2470 (2022). https://doi.org/10.1007/s11071-022-07269-x

    Article  Google Scholar 

  8. Ma, W.X.: N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simul. 190, 270–279 (2021). https://doi.org/10.1016/j.matcom.2021.05.020

    Article  MathSciNet  MATH  Google Scholar 

  9. Rizvi, S.T.R., Seadawy, A.R., Farah, N., et al.: Application of Hirota operators for controlling soliton interactions for Bose–Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos Soliton Fract. 159, 112128 (2022). https://doi.org/10.1016/j.chaos.2022.112128

    Article  MATH  Google Scholar 

  10. Davydov, A.S., Kislukha, N.I.: Solitary excitons in one-dimensional molecular chains. Phys. Status Sol. (B) 59(2), 465–470 (1973). https://doi.org/10.1002/PSSB.2220590212

    Article  Google Scholar 

  11. Shen, Y., Tian, B., Cheng, C.D., et al.: Bilinear auto-Bäcklund transformation, breather-wave and periodic-wave solutions for a \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Eur. Phys. J. Plus 136, 1–13 (2021). https://doi.org/10.1140/epjp/s13360-021-01987-8

    Article  Google Scholar 

  12. Raza, N., Ur Rahman, R., Seadawy, A., et al.: Computational and bright soliton solutions and sensitivity behavior of Camassa–Holm and nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 35(11), 2150157 (2021). https://doi.org/10.1142/S0217979221501575

    Article  MATH  Google Scholar 

  13. Mahmud, F., Samsuzzoha, M., Akbar, M.A.: The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation. Results Phys. 7, 4296–4302 (2017). https://doi.org/10.1016/j.rinp.2017.10.049

    Article  Google Scholar 

  14. Mohyud-Din, S.T., Irshad, A.: Solitary wave solutions of some nonlinear PDEs arising in electronics. Opt. Quantum Electron. 49, 1–12 (2017). https://doi.org/10.1007/s11082-017-0974-y

    Article  Google Scholar 

  15. Abdul Kayum, M., Ali Akbar, M., Osman, M.S.: Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma. Wave Rand. Complex 32(4), 1672–1693 (2022). https://doi.org/10.1080/17455030.2020.1831711

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, L., Luan, Z., Zhou, Q., et al.: Bright soliton solutions of the \((2+1)\)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–2620 (2021). https://doi.org/10.1007/s11071-021-06411-5

    Article  Google Scholar 

  17. Chen, J., Luan, Z., Zhou, Q., et al.: Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 100, 2817–2821 (2020). https://doi.org/10.1007/s11071-020-05649-9

    Article  MATH  Google Scholar 

  18. Mo, Y., Ling, L., Zeng, D.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022). https://doi.org/10.1016/j.physleta.2021.127739

    Article  MATH  Google Scholar 

  19. Wang, D.S., Yin, S., Tian, Y., et al.: Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Comput. 229, 296–309 (2014). https://doi.org/10.1016/j.amc.2013.12.057

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, W.Q., Tian, S.F., Wang, X.B., et al.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019). https://doi.org/10.1016/j.geomphys.2019.103508

    Article  MathSciNet  MATH  Google Scholar 

  21. Qin, B., Tian, B., Liu, W. J., et al. Solitonic excitations and interactions in the three-spine \(\alpha \)-helical protein with inhomogeneity. SIAM J. Appl. Math. 71(4), 1317-1353 (2011). https://www.jstor.org/stable/23070186

  22. Wang, X., Zhang, L.L.: The vector soliton of the \((3+1)\)-dimensional Gross–Pitaevskii equation with variable coefficients. Nonlinear Dyn. 111(6), 5693–5708 (2022). https://doi.org/10.1007/s11071-022-08121-y

    Article  Google Scholar 

  23. Liu, J., Jin, D.Q., Zhang, X., et al.: Excitation and interaction between solitons of the three-spine \(\alpha \)-helical proteins under non-uniform conditions. Optik 158, 97–104 (2018). https://doi.org/10.1016/j.ijleo.2017.11.200

  24. Zhang, S., Cai, B.: Multi-soliton solutions of a variable-coefficient KdV hierarchy. Nonlinear Dyn. 78(3), 1593–1600 (2014). https://doi.org/10.1007/s11071-014-1539-2

    Article  MathSciNet  Google Scholar 

  25. Liu, S., Zhang, X., Xu, L., et al.: Expectation-maximization algorithm for bilinear systems by using the Rauch–Tung–Striebel smoother. Automatica 142, 110365 (2022). https://doi.org/10.1016/j.automatica.2022.110365

    Article  MathSciNet  MATH  Google Scholar 

  26. Fei, Q., Ma, J., Xiong, W., et al.: Variational Bayesian identification for bilinear state space models with Markov-switching time delays. Int J Robust Nonlinear 30(17), 7478–7495 (2020). https://doi.org/10.1002/rnc.5190

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J., Wu, H.: Rational solutions with zero background and algebraic solitons of three derivative nonlinear Schrödinger equations: bilinear approach. Nonlinear Dyn. 109(4), 3101–3111 (2022). https://doi.org/10.1007/s11071-022-07593-2

    Article  Google Scholar 

Download references

Acknowledgements

Research Project Supported by Shanxi Scholarship Council of China (2021-030).

Funding

This paper is supported by Shanxi Youth Scientific Research Project. The Project Number is 202103021223060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, LL. N-soliton solutions for a variable coefficient trihydrogen chain \(\alpha \)-helix protein system with gain or loss terms. Nonlinear Dyn 111, 21241–21257 (2023). https://doi.org/10.1007/s11071-023-08928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08928-3

Keywords

Navigation