Skip to main content
Log in

Robust collision-free guidance and control for fully actuated multirotor aerial vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the robust guidance and control of fully actuated multirotor aerial vehicles in the presence of moving obstacles, linear velocity constraints, and matched model uncertainties and disturbances. We address this problem by adopting a hierarchical flight control architecture consisting of a supervisory outer-loop guidance module and an inner-loop stabilizing control one. The position and attitude control laws are designed using a proportional–derivative approach combined with a high-order sliding mode disturbance observer. The resulting inner-loop control strategy is arbitrarily smooth and robust (in the sliding mode sense) with respect to model disturbances and uncertainties. On the other hand, we propose a robust collision-free guidance strategy that extends the continuous-control-obstacles method to drive the vehicle to a target pose under velocity constraints, disturbances, and uncertainties, in an environment containing moving obstacles. The overall method has been numerically evaluated and shown to be effective in providing satisfactory tracking performance, collision-free guidance, satisfaction of linear velocity constraints, and computational viability. Furthermore, it is shown to outperform an analogous scheme based on the original continuous-control-obstacles method and conventional sliding mode inner-loop control laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

Notes

  1. https://youtu.be/iYBHNpdhsPE

References

  1. Singireddy, S.R.R., Daim, T.U.: Technology Roadmap: Drone Delivery - Amazon Prime Air, pp. 387–412. Springer, Cham (2018)

    Google Scholar 

  2. Heredia, G., Jimenez-Cano, A.E., Sanchez, I., Llorente, D., Vega, V., Braga, J., Acosta, J.A., Ollero, A.: “Control of a multirotor outdoor aerial manipulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3417–3422 (2014)

  3. Gawel, A., Kamel, M., Novkovic, T., Widauer, J., Schindler, D., von Altishofen, B.P., Siegwart, R., Nieto, J.: Aerial picking and delivery of magnetic objects with mavs. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5746–5752 (2017)

  4. Park, S., Lee, J., Ahn, J., Kim, M., Her, J., Yang, G.-H., Lee, D.: Odar: aerial manipulation platform enabling omnidirectional wrench generation. IEEE/ASME Trans. Mechatron. 23(4), 1907–1918 (2018)

    Article  Google Scholar 

  5. Ryll, M., Bicego, D., Giurato, M., Lovera, M., Franchi, A.: Fast-hex—a morphing hexarotor: design, mechanical implementation, control and experimental validation. arXiv:2004.06612 (2020)

  6. Ricardo Jr, J.A., Santos, D.A.: Position guidance and control for fully actuated multirotor aerial vehicles in dynamic environments. In: XLIII Ibero-Latin-American Congress on Computational Methods in Engineering (2022)

  7. Rashad, R., Goerres, J., Aarts, R., Engelen, J.B.C., Stramigioli, S.: Fully actuated multirotor UAVS: a literature review. IEEE Robot. Autom. Mag. 27(3), 97–107 (2020)

    Article  Google Scholar 

  8. Ricardo Jr, J.A., Santos, D.A.: Smooth second-order sliding mode control for fully actuated multirotor aerial vehicles. ISA Trans. (2022)

  9. Bezerra, J.A., Santos, D.A.: On the guidance of fully-actuated multirotor aerial vehicles under control allocation constraints using the receding-horizon strategy. ISA Trans. (2021)

  10. Santos, D.A., Lagoa, C.M.: Wayset-based guidance of multirotor aerial vehicles using robust tube-based model predictive control. ISA Trans. 128, 123–135 (2022)

    Article  Google Scholar 

  11. Yu, Y., Shan, D., Benderius, O., Berger, C., Kang, Y.: Formally robust and safe trajectory planning and tracking for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 23(12), 22971–22987 (2022)

    Article  Google Scholar 

  12. Drajunov, S.V., Utkin, V.I.: Sliding mode control in dynamic systems. Int. J. Control 1029–1037 (1991)

  13. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Kotarski, D., Piljek, P., Brezak, H., Kasac, J.: Design of a fully actuated passively tilted multirotor uav with decoupling control system. In: International Conference on Mechanical and Aerospace Engineering, pp. 385–390 (2017)

  15. Yao, C., Krieglstein, J., Janschek, K.: Modeling and sliding mode control of a fully-actuated multirotor with tilted propellers. IFAC-PapersOnLine, vol. 51, pp. 115–120 (2018)

  16. Rajappa, S., Ryll, M., Bülthoff, H., Franchi, A.: Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: Proceedings - IEEE International Conference on Robotics and Automation (2015)

  17. Silva, A.L., Santos, D.A.: Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles. IEEE Trans. Aerosp. Electron. Syst. 56(6), 4288–4299 (2020)

    Article  Google Scholar 

  18. Cömert, C., Kasnakoğlu, C.: Comparing and developing pid and sliding mode controllers for quadrotor. Int. J. Mech. Eng. Robot. Res. 6, 194–199 (2017)

    Article  Google Scholar 

  19. Herrera, M., Chamorro, W., Gómez, A.P., Camacho, O.: Sliding mode control: an approach to control a quadrotor. In: Asia-Pacific Conference on Computer Aided System Engineering, pp. 314–319 (2015)

  20. Eltayeb, A., Rahmat, M.F., Basri, M.A.M., Mahmoud, M.S.: An improved design of integral sliding mode controller for chattering attenuation and trajectory tracking of the quadrotor uav. Arab. J. Sci. Eng. 45(8), 6949–6961 (2020)

    Article  Google Scholar 

  21. Kamel, M., Alonso-Mora, J., Siegwart, R., Nieto, J.: Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 236–243 (2017)

  22. Pereira, J.C., Leite, V.J.S., Raffo, G.V.: An ellipsoidal-polytopic based approach for aggressive navigation using nonlinear model predictive control. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 827–835 (2021)

  23. Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Quadrotor-uav optimal coverage path planning in cluttered environment with a limited onboard energy. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 979–984 (2017)

  24. Bareiss, D., Van Den Berg, J.: Reciprocal collision avoidance for robots with linear dynamics using lqr-obstacles. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3847–3853 (2013)

  25. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  26. Guyy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: ClearPath: highly parallel collision avoidance for multi-agent simulation. In: Computer Animation, Conference Proceedings, pp. 177–187 (2009)

  27. Van Der Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3475–3482 (2011)

  28. Rufli, M., Alonso-Mora, J., Siegwart, R.: Reciprocal collision avoidance with motion continuity constraints. IEEE Trans. Rob. 29(4), 899–912 (2013)

    Article  Google Scholar 

  29. Bareiss, D., Van Den Berg, J.: Generalized reciprocal collision avoidance. Int. J. Robot. Res. 34(12), 1501–1514 (2015)

    Article  Google Scholar 

  30. Markley, F.L., Crassidis, J.L.: Fundamentals of Spacecraft Attitude Determination and Control, ser. Space Technology Library. Springer, New York (2014)

    Book  MATH  Google Scholar 

  31. Goldstein, H.: Classical Mechanics. Addison-Wesley, Boston (1980)

    MATH  Google Scholar 

  32. Khan, W., Nahon, M.: A propeller model for general forward flight conditions. Int. J. Intell. Unmanned Syst. 3(2/3), 72–92 (2015)

    Article  Google Scholar 

  33. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: missile guidance application. Automatica 43(8), 614–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., Peng, Y.: Smooth and time-optimal s-curve trajectory planning for automated robots and machines. Mech. Mach. Theory 137, 127–153 (2019)

    Article  Google Scholar 

  36. Ricardo Jr, J.A., Santos, D.A.: Robot guidance and control using global sliding modes and acceleration velocity obstacles. In: International Workshop on Variable Structure Systems and Sliding Mode Control (2022)

  37. Van Der Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. IEEE Trans. Rob. 23(4), 834–834 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP) under Grant 2019/053340; Coordination of Superior Level Staff Improvement (CAPES), EMBRAER S.A., and the Aeronautics Institute of Technology (ITA) under the doctorate scholarship under the Academic-Industrial Graduate Program (DAI); National Council for Scientific and Technological Development (CNPq), under Grant 304300/2021-7; and Funding Authority for Studies and Projects (FINEP) under Grant 01.22.0069.00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ricardo Jr.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 3

Proof of Lemma 3

The solution of the position reference filter differential equation (32) is given by

$$\begin{aligned} {{\textbf {y}}}(t) = e^{{\textbf {A}}\delta t}{{\textbf {y}}}(t_0) + \int _{t_0}^{t}e^{{\textbf {A}}(t-\tau )}{} {\textbf {B}}{{{\textbf {v}}}}_r^* \text {d} \tau . \end{aligned}$$
(49)

where \(\delta t\triangleq t - t_0\).

The integral of (49) cannot be directly calculated since matrix \({\textbf {A}}\) is singular. To analytically calculate (49), we consider \( {{{\textbf {v}}}}_r^*\) as a constant input and define an augmented vector \({\textbf {w}} \triangleq ({\textbf {y}}, {{{\textbf {v}}}}_r^*)\in {\mathbb {R}}^{(3p+6)}\). Then, using (32) we can write the following dynamic model

$$\begin{aligned} \dot{{\textbf {w}}} = \bar{{\textbf {A}}}{{\textbf {w}}}, \end{aligned}$$
(50)

where

$$\begin{aligned} \bar{{\textbf {A}}} \triangleq \left[ \begin{array}{cc} {\textbf {A}}&{} {\textbf {B}} \\ {\textbf {0}}_{3\times (3p+3)} &{} {\textbf {0}}_{3\times 3} \end{array} \right] \in {\mathbb {R}}^{(3p+6) \times (3p+6)}. \end{aligned}$$

The solution of (50) is easily calculated and is given by \({\textbf {w}}(t) = e^{\bar{{\textbf {A}}}(\delta t)}{} {\textbf {w}}(0)\). Using the power series definition of matrix exponential, \(e^{\bar{{\textbf {A}}}(\delta t)}\) can be calculated by

$$\begin{aligned} e^{\bar{{\textbf {A}}}(\delta t)} = \left[ \begin{array}{cc} e^{{\textbf {A}} \delta t} &{} \int _{t_0}^{t}e^{{\textbf {A}}(t-\tau )}{} {\textbf {B}} \text {d} \tau \\ {\textbf {0}}_{3\times (3p+3)} &{} {\textbf {I}}_{3} \end{array}\right] . \end{aligned}$$
(51)

Then, using (51), equation (49) can be rewritten as \( {{\textbf {y}}}(t) = e^{{\textbf {A}}\delta t}{{\textbf {y}}}(t_0) + {\textbf {G}}(\delta t) {{{\textbf {v}}}}_r^*,\) where

$$\begin{aligned} {\textbf {G}}(\delta t) \triangleq \left[ {\textbf {I}}_{(3p+3)}, {\textbf {0}}_{(3p+3) \times 3}\right] e^{\bar{{\textbf {A}}}(\delta t)} \left[ \begin{array}{c} {\textbf {0}}_{(3p+3) \times 3} \\ {\textbf {I}}_3 \end{array} \right] , \end{aligned}$$

thus completing the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricardo, J.A., Santos, D.A. Robust collision-free guidance and control for fully actuated multirotor aerial vehicles. Nonlinear Dyn 111, 21007–21023 (2023). https://doi.org/10.1007/s11071-023-08927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08927-4

Keywords

Navigation